• Login
    View Item 
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Materials Engineering (FYP)
    • View Item
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Materials Engineering (FYP)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of H2C204 solution on formation of Porous AAO thin film

    Thumbnail
    View/Open
    References and appendix.pdf (138.3Kb)
    Conclusion.pdf (55.45Kb)
    Results and discussion.pdf (3.123Mb)
    Methodology.pdf (85.18Kb)
    Literature review.pdf (240.0Kb)
    Introduction.pdf (67.43Kb)
    Abstract, Acknowledgement.pdf (71.33Kb)
    Date
    2008-04
    Author
    Puteri Normiyani Abu Hassan
    Metadata
    Show full item record
    Abstract
    The anodizing of aluminium has been investigated with the aim to realize nano-porous structures and nano-porous oxides for use as nano-templates. Before undergoing electrochemical oxidation, aluminium samples were cleaned in acetone, annealed at 450ºC under nitrogen flow. Then the Al sheets undergo alkaline etching in NaOH at 50 ºC to 60ºC and dipped in HNO3 at room temperature. Anodizing was carried out using oxalic acid, H2C2O4 as electrolyte. Different combinations of processing parameters (anodization time, electrolyte concentration, and current density) were used in order to optimize the process. The phase analysis of the samples was analyzed by X-Ray Diffraction (XRD) and the porous surface was observed by Scanning Electron Microscopy (SEM). The results show that at lower current density and short anodizing time, no pores were formed in each different electrolyte concentration. However, increasing the anodizing time to 2 hours produced smaller, rounded pores. But at short anodizing time with higher current density produced bigger pores. The pores formed were not uniformly distributed. Further investigations are required to optimise the production of highly self-ordered porous structures. By optimizing all of these experimental conditions, we were able to obtain porous anodic aluminum oxide layers displaying ordered domains several hundreds of nanometers in length.
    URI
    http://dspace.unimap.edu.my/123456789/3309
    Collections
    • School of Materials Engineering (FYP) [258]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback