• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Materials Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Materials Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An electrochemical impedance spectroscopy study of Al-Zn and Al-Zn-Sn Alloys in tropical seawater

    Thumbnail
    View/Open
    Access is limited to UniMAP community (353.9Kb)
    Date
    2012
    Author
    M. C., Isa
    Abdul Razak, Daud
    M. Y., Ahmad
    M., Daud
    Shaiful Rizam, Shamsudin
    N., Hassanuddin
    M. S., Din Yati
    M. M., Muhammad
    Metadata
    Show full item record
    Abstract
    In this paper, a study on the electrochemical behaviour and electrical properties of Al-Zn and Al-Zn-Sn alloys in tropical seawater using open circuit potential (OCP) measurement and electrochemical impedance spectroscopy (EIS) are reported. The results from both the OCP and EIS tests show that surface activation was observed in the Al-Zn alloy with the addition of 1.34 wt.% Sn which can be manifested by the shift of OCP values towards more electronegative direction. The EIS spectra of Al-Zn alloy exhibits a semicircle loop, while the EIS spectra for the Al-Zn-Sn alloy exhibits a semicircle with a semicircle inductive loop. The change in EIS spectra for Al-Zn-Sn alloy is correlated to the increase of surface activation resulting in a less stable passive layer. Equivalent circuits models were proposed to fit the impedance spectra and the corresponding electrical parameters with optimum values were deduced. The modulus impedance in the low frequency region or polarization resistance, Rpol obtained for the Al-Zn-Sn alloy, Rpol = 2.76 kΩ cm2) is slightly decreased compared to the corresponding value of the Al-Zn alloy, Rpol = 3.97 kΩ cm2), indicating a considerable reduction in the protective capability of the oxide layer on the Al- Zn-Sn alloy. It appears that the heterogeneous oxide film and pores formed on the Al-Zn-Sn alloy play a key role in reducing total resistance to the flow of electron at the alloy-electrolyte interface.
    URI
    http://www.scientific.net/KEM.510-511.284
    http://dspace.unimap.edu.my/123456789/19480
    Collections
    • School of Materials Engineering (Articles) [553]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback