• Login
    View Item 
    •   DSpace Home
    • The Library
    • Conference Papers
    • View Item
    •   DSpace Home
    • The Library
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Principle component analysis (PCA) based coin-counting system

    Thumbnail
    View/Open
    Paper ID R055.pdf (184.9Kb)
    Date
    2010-06-02
    Author
    Mohd. Syafarudy, Abu
    Lim, Eng Aik
    Metadata
    Show full item record
    Abstract
    In this paper, a neural network using a feature extraction scheme known as principle component analysis (PCA) is proposed to recognize two-dimensional objects in an image. This approach consists of two stages. First, the procedures of determining the coefficients of rapid descriptor (RD) of 2-D objects from their boundary are described. To speed up the learning process of the neural network, a PCA technique is used to extract the principal components of these RD coefficients. Then, these reduced components are utilized to train a feed-forward neural network for object recognition and classification. We compare recognition performance, network sizes, and training time for networks trained with both reduced and unreduced data. The experimental results show that a significant reduction in training time can be achieved without a sacrifice in classifier accuracy.
    URI
    http://dspace.unimap.edu.my/123456789/10211
    Collections
    • Conference Papers [2599]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback