• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of human emotion from eeg using discrete wavelet transform

    Thumbnail
    View/Open
    Classification of human emotion from eeg using discrete wavelet transform.pdf (32.00Kb)
    Access is limited to UniMAP community (486.0Kb)
    Date
    2010-04
    Author
    Murugappan, M.
    Ramachandran, Nagarajan
    Sazali, Yaacob, Prof. Dr.
    Metadata
    Show full item record
    Abstract
    In this paper, we summarize the human emotion recognition using different set of electroencephalogram (EEG) channels using discrete wavelet transform. An audio-visual induction based protocol has been designed with more dynamic emotional content for inducing discrete emotions (disgust, happy, surprise, fear and neutral). EEG signals are collected using 64 electrodes from 20 subjects and are placed over the entire scalp using International 10-10 system. The raw EEG signals are preprocessed using Surface Laplacian (SL) filtering method and decomposed into three different frequency bands (alpha, beta and gamma) using Discrete Wavelet Transform (DWT). We have used db4 wavelet function for deriving a set of conventional and modified energy based features from the EEG signals for classifying emotions. Two simple pattern classification methods, K Nearest Neighbor (KNN) and Linear Discriminant Analysis (LDA) methods are used and their performances are compared for emotional states classification. The experimental results indicate that, one of the proposed features (ALREE) gives the maximum average classification rate of 83.26% using KNN and 75.21% using LDA compared to those of conventional features. Finally, we present the average classification rate and subsets of emotions classification rate of these two different classifiers for justifying the performance of our emotion recognition system.
    URI
    http://www.scirp.org/journal/jbise/
    http://dspace.unimap.edu.my/123456789/8993
    Collections
    • School of Mechatronic Engineering (Articles) [319]
    • Sazali Yaacob, Prof. Dr. [250]
    • Ramachandran, Nagarajan, Prof. Dr. [90]
    • M. Murugappan, Dr. [67]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback