Show simple item record

dc.contributor.authorLim, G. D.
dc.contributor.authorM. J., Abd Latif
dc.contributor.authorM. R., Alkahari
dc.contributor.authorM. S., Yob
dc.contributor.authorM., Musa
dc.contributor.authorM. N., Abdul Rahman
dc.contributor.authorP., Rajaandra
dc.contributor.authorNguyen, H. Q.
dc.contributorFaculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM)en_US
dc.contributorAdvanced Manufacturing Centre (AMC), Universiti Teknikal Malaysia Melaka (UTeM)en_US
dc.contributorPERKESO Rehabilitation Centeren_US
dc.contributorInstitute of Engineering and Technology, Thu Dau Mot Universityen_US
dc.creatorM. J., Abd Latif
dc.date2022
dc.date.accessioned2022-08-07T03:41:48Z
dc.date.available2022-08-07T03:41:48Z
dc.date.issued2022-03
dc.identifier.citationInternational Journal of Nanoelectronics and Materials, vol.15 (Special Issue), 2022, pages 247-258en_US
dc.identifier.issn1997-4434 (Online)
dc.identifier.issn1985-5761 (Printed)
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/75813
dc.descriptionLink to publisher's homepage at http://ijneam.unimap.edu.myen_US
dc.description.abstractProsthetic socket plays the most important role in lower limb prosthesis. The conventional fabrication process of prosthetic socket is labor intensive and time-consuming. The application of additive manufacturing technology may greatly simplify the process. One of the main concerns on the reliability of 3D printed prosthetic socket is its structural strength due to the various 3D printing parameters that may influence the strength of 3D printed products. Furthermore, most of the previous studies focused on single parameter and the effect on socket strength. Thus, this study aimed to examine the optimization of fused deposition modeling printing parameter of 3D printed prosthetic socket in term of strength, fabrication time and weight. Three FDM printing parameters were studied which included layer height, nozzle diameter and infill percentage. The data was analyzed using Taguchi and PCR-TOPSIS methods. Based on the result, it was concluded that the most effective combination of printing parameter is 1.0 mm nozzle diameter, 0.48 mm layer height and 30% infill percentage. In addition, infill percentage shown the highest influence towards the responsive values followed by layer height and nozzle diameter.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.relation.ispartofseriesSpecial Issue ISSTE 2022;
dc.subject.otherProsthetic socketen_US
dc.subject.otherFused deposition modellingen_US
dc.subject.other3D printingen_US
dc.subject.otherPCR-TOPSISen_US
dc.titleParameter optimization of fused deposition modeling process for 3D printed prosthetic socket using PCR-TOPSIS methoden_US
dc.typeArticleen_US
dc.identifier.urlhttp://ijneam.unimap.edu.my
dc.contributor.urljuzaila@utem.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record