• Login
    View Item 
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Bioprocess Engineering (FYP)
    • View Item
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Bioprocess Engineering (FYP)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of organic surfactant for stabilizing engineered functional pharmaceutical biodegradable polymeric nanoparticles

    Thumbnail
    View/Open
    Abstract,acknowledgement.pdf (163.2Kb)
    Introduction.pdf (42.75Kb)
    Literature Review.pdf (288.3Kb)
    Methodology.pdf (287.4Kb)
    Result and Discussion.pdf (695.5Kb)
    Conclusion and Recommendation.pdf (152.0Kb)
    Refference and Appendics.pdf (307.8Kb)
    Date
    2017-06
    Author
    Azman, Muhamad @ Muhamad Nor
    Metadata
    Show full item record
    Abstract
    Biodegradable polymeric nanoparticles (NPs) are produced via nanoprecipitation method also known as solvent displacement method that involved chemical reaction of organic phase to aqueous phase. The objectives of this study are to study the optimum condition of some parameters for the biodegradable polymeric nanoparticles (NPs) production by using design of experiment (DOE) approach. The recommended optimized condition that was suggested by DOE approached were; volume ratio of organic phase to aqueous phase at 10, agitation speed on aqueous phase at 1000 rpm and polymer concentration at 1 mg/mL. Under this operating condition, the model was predicted to achieve lower particle size in polymeric NPs which is at 398.126 nm. Then, the suggested optimum process parameters were applied for stabilization with the addition of polyvinylpyrrolidone (PVP) in the aqueous phase. Observation based on their color change was done for one month. The surfactant ratio was fixed at 1 wt%. The effectiveness and physico-chemical properties of functional particles in production of biodegradable polymeric NPs were investigated by using Scanning Electron Microscopic (SEM) and Fourier Transform Infrared (FTIR).
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/73355
    Collections
    • School of Bioprocess Engineering (FYP) [458]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback