• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural characterization and electrochemical performance of nitrogen doped graphene supercapacitor electrode fabricated by hydrothermal method

    Thumbnail
    View/Open
    Structural characterization and electrochemical performance.pdf (834.2Kb)
    Date
    2021-04
    Author
    Mohd Asyadi, Azam
    Nur Ezyanie, Safie
    Mohd Fareezuan, Abdul Aziz
    Raja Noor Amalina, Raja Seman
    Muhamad Rafi, Suhaili
    Anas, Abdul Latiff
    Faiz, Arith
    Anuar, Mohamed Kassim
    Mohd Hanafi Ani
    Metadata
    Show full item record
    Abstract
    The introduction of nitrogen (N) into graphene is of great focus as it escalates overall device performance as the introduction of N atoms improves the electronics of the graphene. In this work, the N-doped graphene electrode was prepared by using hydrothermal method where graphene nanoplatelet was used as active material and aqueous ammonia as the nitrogen source. The electrode was then used as the supercapacitor electrode. From Raman analysis, the ID/IG ratio of N-doped graphene has a higher value than that of pristine graphene. This indicates the N-doped graphene possessed more defects and has a higher degree of disorder within the graphene sheet. For X-ray diffraction analysis, the result exhibits a broad peak at 2θ = 26.3o, corresponding to the graphitic profile with an interlayer spacing of 3.57 Å. X-ray photoelectron spectroscopy analysis proved that there is a presence of nitrogen on the graphene surface, with 2.35 % of the atomic concentration. From the cyclic voltammetry, all curves showed an almost rectangular shape at the scan rates of 10 to 100 mVs-1. The calculated specific gravimetric capacitance is 25.2 F g-1 at 10 mV s-1. In addition, charge-discharge analysis confirmed the typical behavior of electric double layer capacitor from the linear symmetric slopes.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/71490
    Collections
    • International Journal of Nanoelectronics and Materials (IJNeaM) [336]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback