• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generation of multiple resonance wavelengths from one dimensional photonic crystal wire for nanoscopic wavelength division multiplexing system

    Thumbnail
    View/Open
    Generation of Multiple Resonance.pdf (543.2Kb)
    Date
    2020-12
    Author
    Mohd Nuriman, Nawi
    Dilla Duryha, Berhanuddin
    Jahariah, Sampe
    Burhanuddin, Yeop Majlis
    Ahmad Rifqi, Md Zain
    Metadata
    Show full item record
    Abstract
    Wavelength division multiplexing (WDM) is a core technology for high-bandwidth data transport system. As one of the major components in WDM system, a smaller footprint of multiplexer with two or more wavelengths is needed and photonic crystal (PhC) is a good candidate to make this approach feasible. PhC offers nanometer scale devices that can be fabricated via the existing matured silicon technology. We have modelled and simulated the design with FDTD solutions and show that multiple number of wavelengths can be generated via one-dimensional (1D) multiple cavity PhC wire. In this report, we show that with the introduction of three cavities in between embedded PhC holes, three fundamental resonance wavelengths at 1645.60, 1670.76 and 1698.68 nm were excited respectively. The number of resonance wavelengths were excited additively with the number of cavities. We observed asymmetrical free spectral ranges (FSR)s at 25.16 and 27.92 nm respectively for the generated wavelengths. The wavelengths can be tailored to any wavelength ranges; limited to silicon’s light absorption and index. However, a complex mathematical algorithm is needed to control the FSR. The results in this study will contribute to the device development for future WDM equipment miniaturization.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/69807
    Collections
    • International Journal of Nanoelectronics and Materials (IJNeaM) [336]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback