• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Benefits of molybdenum substitution in Na3V2(PO4)3 cathode material for sodium ion batteries: A first principles study

    Thumbnail
    View/Open
    Benefits of Molybdenum Substitution.pdf (429.5Kb)
    Date
    2020-12
    Author
    Mohamad Firdaus, Rosle
    Fadhlul Wafi, Badrudin
    Siti Munirah, Hasanaly
    Siti Aminah, Mohd Noor
    Mohamad Fariz, Mohamad Taib
    Muhd Zu Azhan, Yahya
    Metadata
    Show full item record
    Abstract
    The first principles study on the structural and electronic properties of Na3V2(PO4)3 (NVP) was performed using first principles calculation. Results on lattice constant, Mulliken analysis and density of state are discussed in this paper. Overall, lattice parameter calculation obtained using GGA-PBEsol functional is in better agreement with the experimental result. Based on atomic population, Na2 is expected to be sodiated first compared to Na1. From the bond order calculation, it was shown that the P-O bond provided thermal stability and contributed to the long-life cycle of the battery. The Na-O bond showed that the ionic character is essential for ion migration. From the Density of state, the overlapping between O 2p and P 3p orbitals forms a strong bond which supports the bond order result. In this study, the calculated band gap value was 2.06 eV and which then decreased to 0.4 eV upon desodiation. The effect of Molybdenum (Mo) substitution on NVP was also studied using virtual crystal approximation method. The volume of NVP increases with increasing amount of Mo6+ substitution which eases the migration of ions and this will be beneficial to the electrochemical performance. Thus, this substituted NVP with Mo (Na3V2-xMox(PO4)3) cathode material could be a potential candidate for sodium ion batteries.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/69608
    Collections
    • International Journal of Nanoelectronics and Materials (IJNeaM) [336]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback