Changes in hamstring eccentric peak torques and angles of peak torque following 90 minutes of soccer specific exertions
View/ Open
Date
2020Author
Muhammad Hamdan
Raihana, Sharir
Yeo, Wee Kian
Raja Mohammed Firhad, Raja Azidin
Metadata
Show full item recordAbstract
This study aimed to investigate the effects of a ball-oriented soccer match-play simulation on the hamstrings eccentric torque production. Seven male recreational athletes volunteered for this study. Participants completed 90-minutes of the ball-oriented soccer simulation interceded by a 15-minute half time interval with five successful trials of hamstrings eccentric contractions on an isokinetic dynamometer at selected time points throughout the simulation. A 2 (limb: dominant; non-dominant) × 4 (time: 0 min; 45 min; 60 min; 105 min) “split-plots” analysis of variance (SPANOVA) revealed significant reductions in hamstrings eccentric peak torques over time, while no significant change was apparent in hamstrings eccentric angles of peak torque. There was also no interaction effect of limb dominance over time for both peak torque and angles of peak torque parameters. The observed changes suggest that exertions from a ball-oriented soccer match-play simulation may have detrimental effects on the hamstrings eccentric strength parameters thus may increase risk of ACL injury. High variabilities in angles of peak torques were also observed in this study. Future exploration is warranted in order to address the extent of variabilities that may be present in larger sample sizes thus providing a better understanding of the influence of these variabilities on the muscular strength parameters of ACL injury risk. The findings suggest firstly, that fatigue from soccer-specific exertions during match-play may increase an athlete’s susceptibility to ACL injury, and secondly, that with accumulating fatigue, the nondominant limb may be equally at risk of injury as the dominant limb, contradicting previous findings from epidemiological studies.