• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • Institute of Nano Electronic Engineering (INEE) (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • Institute of Nano Electronic Engineering (INEE) (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advances in biosensors: Principle, architecture and applications

    Thumbnail
    View/Open
    Advances in biosensors principle, architecture and applications.pdf (167.5Kb)
    Date
    2014-01
    Author
    Veeradasan, Perumal
    Uda, Hashim, Prof. Dr.
    Metadata
    Show full item record
    Abstract
    The ability to detect pathogenic and physiologically relevant molecules in the body with high sensitivity and specificity offers a powerful opportunity in the early diagnosis and treatment of diseases. Early detection and diagnosis can be used to greatly reduce the cost of patient care associated with the advanced stages of many diseases. However, despite their widespread clinical use, these techniques have a number of potential limitations. For example, a number of diagnostic devices have slow response times and are burdensome to patients. Furthermore, these assays are expensive and cost the health care industry billions of dollars every year. Therefore, there is a need to develop more efficient and reliable sensing and detection technologies. A biosensor is commonly defined as an analytical device that uses a biological recognition system to target molecules or macromolecules. Biosensors can be coupled to a physiochemical transducer that converts this recognition into a detectable output signal. Typically biosensors are comprised of three components: (1) the detector, which identifies the stimulus; (2) the transducer, which converts this stimulus to a useful output; and (3) the signal processing system, which involves amplification and display of the output in an appropriate format. The goal of this combination is to utilize the high sensitivity and selectivity of biological sensing for analytical purposes in various fields of research and technology. We review here some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing biosensors and improving their applications in medical diagnosis.
    URI
    http://dspace.unimap.edu.my:80/dspace/handle/123456789/35103
    Collections
    • Uda Hashim, Prof. Ts. Dr. [243]
    • Institute of Nano Electronic Engineering (INEE) (Articles) [206]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback