Resemblance of rain fall in Bangladesh with correlation dimension and neural network learning
Date
2013-10Author
Abu Nasir, Mohammad Enamul Kabir
Hussain Muhammad Imran, Hasan
Mohd Abdur Rashid, Dr.
Azralmukmin, Azmi
Md. Zakir, Hossain
Md. Shahjahan
Metadata
Show full item recordAbstract
Rain fall and Temperature are undoubtedly two important factors that balance water in the environment. Adequate study of the rain behavior helps to forecast it. The time series obtained from different stations of the country throughout the several years are collected and analyzed. The dynamics of rain fall time series is analyzed with Correlation Dimension (CD) to characterize the several zones of Bangladesh. In addition a Neural Network (NN) predictor model was designed to realize complexity of rain fall. We found the interesting similarity between CD and NN predictor. The findings are useful in explaining why several zones show behavioral regularity and change.
URI
http://thescipub.com/abstract/10.3844/ajassp.2013.1172.1180http://dspace.unimap.edu.my:80/dspace/handle/123456789/33889