• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • Institute of Nano Electronic Engineering (INEE) (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • Institute of Nano Electronic Engineering (INEE) (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface tension analysis of cost-effective paraffin wax and water flow simulation for microfluidic device

    Thumbnail
    View/Open
    Surface tension analysis of cost-effective paraffin wax and water flow simulation for microfluidic device.pdf (185.9Kb)
    Date
    2014
    Author
    Nurulazirah, Md Salih
    Uda, Hashim, Prof. Dr.
    Nafarizal, Nayan, Prof. Madya Dr.
    Chin, Fhong Soon
    Mohd Zainizan, Sahdan, Dr.
    Metadata
    Show full item record
    Abstract
    In microfluidic devices, the most important aspect has to be considered for the manufacturing process is the material suitability and geometric design. Among the materials studied, paraffin wax has never been tested and it is proposed as the new approach in this paper for patterning the microchannels. Furthermore, contact angle analysis of the paraffin wax was also studied. Based on the contact angle measurements; the hydrophobicity and surface tension of paraffin wax were analyzed. From the finding, it shows that paraffin wax has a low surface tension and high hydrophobicity. Then, several microchannels design was simulated using COMSOL multiphysics 4.2 software in order to find the optimized geometry. It involves a study of different shape, diameter, length, and angle of microchannels design, and its influence on the water flow velocity. From the simulation results, an optimize microchannels design was obtained consists of 1000 μm channels diameter, 1000 μm inlet channel length, 1.0 cm outlet channels length, and 110o inlet channel angle with water flow velocity of 2.3cm/s. Further study could be done to improve the finding of properties and geometric suitability for microfluidic device.
    URI
    http://dspace.unimap.edu.my:80/dspace/handle/123456789/33534
    Collections
    • Uda Hashim, Prof. Ts. Dr. [243]
    • Institute of Nano Electronic Engineering (INEE) (Articles) [206]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback