Show simple item record

dc.contributor.authorMuhammad Naufal, Mansor
dc.contributor.authorMohd Nazri, Rejab
dc.date.accessioned2014-04-07T04:52:25Z
dc.date.available2014-04-07T04:52:25Z
dc.date.issued2014
dc.identifier.citationApplied Mechanics and Materials, vol.475-476, 2014, pages 1104-1109en_US
dc.identifier.issn1624-1628
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/33463
dc.descriptionLink to publisher's homepage at http://www.ttp.net/en_US
dc.description.abstractInfant pain is a non-stationary made by infants in response to certain situations. This infant facial expression can be used to identify physical or psychology status of infant. The aim of this work is to compare the performance of features in infant pain classification. Fast Fourier Transform (FFT), and Singular value Decomposition (SVD) features are computed at different classifier. Two different case studies such as normal and pain are performed. Two different types of radial basis artificial neural networks namely, Probabilistic Neural Network (PNN) and General Regression Neural Network (GRNN) are used to classify the infant pain. The results emphasized that the proposed features and classification algorithms can be used to aid the medical professionals for diagnosing pathological status of infant pain.en_US
dc.language.isoenen_US
dc.publisherTrans Tech Publicationsen_US
dc.subjectDCTen_US
dc.subjectFFTen_US
dc.subjectGRNN classifieren_US
dc.subjectInfant painen_US
dc.subjectPNNen_US
dc.titleNeural network performance comparison in infant pain expression classificationsen_US
dc.typeArticleen_US
dc.identifier.urlhttp://www.scientific.net/AMM.475-476.1104
dc.identifier.doi10.4028/www.scientific.net/AMM.475-476.1104
dc.contributor.urlapairia@yahoo.comen_US
dc.contributor.urlnazri_554@yahoo.comen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record