• Login
    View Item 
    •   DSpace Home
    • Theses & Dissertations
    • School of Materials Engineering (Theses)
    • View Item
    •   DSpace Home
    • Theses & Dissertations
    • School of Materials Engineering (Theses)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The characterization and properties of recycled natural latex gloves (rNL-G) filled acrylonitrile butadiene rubber (NBR) compounds

    Thumbnail
    View/Open
    Access is limited to UniMAP community. (423.0Kb)
    This item is protected by original copyright. (6.161Mb)
    Declaration Form (172.6Kb)
    Author
    Omar Sabbar, Dahham
    Metadata
    Show full item record
    Abstract
    The utilization of waste rubber from recycled natural latex gloves (rNL-G) by means of compounding together with synthetic rubber: acrylonitrile butadiene rubber (NBR) could represents a new product with an acceptable properties. Results in first series which NBR/ rNL-G compounds particularly fine size up to 20 phr loading of rNL-G, showed overall improvement in cure characteristic, tensile, physical and thermal properties compared to coarser size and other rNL-G loading. Meanwhile, in second series, the incorporation of sawdust short fiber (SD) as natural filler at different loading was studied with optimum rNL-G loading filled NBR from the first series. Results indicated that, the addition of SD loading at 5 phr increased the adhesion between NBR matrix, which led to improve the cure characteristics such as lower cure time and increase the stiffness and rigidity such as modulus and hardness. At third series, the addition of 6 phr of trans-polyoctylene rubber (TOR) as a compatibilizer has increased the crosslinking density and enhanced the incorporation of NBR/ rNL-G compounds, therefore improving the compatibility of NBR/ rNL-G compounds. Most of cure characteristics, tensile, physical and thermal properties of compatibilised NBR/ rNL-G compounds, particularly 6 phr TOR showed better overall properties than uncompatibilised NBR/ rNL-G compounds. The combination of all material referring from optimum loading of 1st series at 20 phr rNL-G/ fine size, 2nd series at 5 phr SD and 3rd series at 6 phr TOR. The NBR/ rNL-G /SD/TOR compound exhibited the most improvement properties particularly the thermal stability, tensile and physical properties. The tensile fracture surface of all series were supported by scanning electron microscopy (SEM) observation proved the behavior of optimum strength of each compound respectively.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/78192
    Collections
    • School of Materials Engineering (Theses) [160]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback