Show simple item record

dc.contributor.authorMohd Shariza Omri, Sabtu
dc.date.accessioned2022-01-11T07:45:13Z
dc.date.available2022-01-11T07:45:13Z
dc.date.issued2016-06
dc.identifier.urihttp://dspace.unimap.edu.my:80/xmlui/handle/123456789/73299
dc.descriptionAccess is limited to UniMAP community.en_US
dc.description.abstractThis project was carried out to classify the morphological features of rice seed varieties of MR219 and MR269 using machine vision technique. The study starts from acquiring image of the rice seed varieties of MR219 and MR269 using a CCD camera. The CCD camera was enclosed in a black box equipped with an illumination system. The images were processed and the morphological features were extracted from the image. This process was carried out in the LabVIEW software. The data was analyzed using MATLAB Neural Network. Through this thesis and data collected, the rice seed varieties can be determined and classified based on the extracted morphological features. The extracted of morphological features were the length, area, width, major axis length, minor axis length, thinness ratio, aspect ratio, rectangular aspect ratio, equivalent diameter, and extend. From the data collected, the lowest MSE which is 2.37592e-1 was acquired using 5 hidden layer of neuron with the highest classification accuracy which is 63.3%. However, the 5 hidden layer of neuron was then tested again to acquire a higher accuracy and the final MSE was 2.09587e-1 with an accuracy of 70%.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.subject.otherMorphological featuresen_US
dc.subject.otherMachine vision techniqueen_US
dc.subject.otherRice seeden_US
dc.subject.otherMR 219en_US
dc.subject.otherMR 269en_US
dc.titleClassification of rice seed MR219 and MR269 varieties based on morphological features using machine vision techniqueen_US
dc.typeOtheren_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record