• Login
    View Item 
    •   DSpace Home
    • Theses & Dissertations
    • School of Materials Engineering (Theses)
    • View Item
    •   DSpace Home
    • Theses & Dissertations
    • School of Materials Engineering (Theses)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Porous catalyst support from clay-precipitated calcium carbonate for carbon nanomaterials growth

    Thumbnail
    View/Open
    Access is limited to UniMAP community. (531.6Kb)
    This item is protected by original copyright. (5.181Mb)
    Declaration of Thesis (2.826Mb)
    Author
    Yasmin, Yuriz
    Metadata
    Show full item record
    Abstract
    Currently, porous materials were widely used as catalyst supports, adsorption of gases or liquid, and gas sensors. In this research, the fabrication of catalyst support utilised clay with controlled amounts of precipitated calcium carbonate (PCC) at 10 wt.%, 15 wt.%, 20 wt.%, and 25 wt.% via a polymeric foam replication method. A mixture of clay, precipitated calcium carbonate, and distilled water were ball milled for 24 hours and 48 hours milling durations in order to form ceramic slurries. After the impregnation process of polymeric foam into ceramic slurries, the green ceramic was dried and sintered at 1250°C for 2 hours holding time. The main objectives of this research are to study the effects of precipitated calcium carbonate additions and different milling durations on the physical and mechanical properties of the catalyst support. The sample that was fabricated with 25 wt.% of precipitated calcium carbonate and milled at 48 hours was found to have the highest compressive strength which at 1.6 MPa. Besides, one-way analysis of variance (ANOVA) showed that the increase between 10 wt.% and 25 wt.% of PCC has significantly increased the strength of the catalyst support and the coefficient of determination (R2) at 0.92. The increase of the mechanical strength was attributed to the transformation of new phases such as anorthite (2CaAl2Si2O8), mullite (3Al2O3·2SiO2), and gehlenite (3Ca2Al2SiO7). On the other hand, foam density would increase when the percentage of porosity decreased.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/72462
    Collections
    • School of Materials Engineering (Theses) [132]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback