• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Materials Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Materials Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MgH2 and LiH metal hydrides crystals as novel hydrogen storage material: Electronic structure and optical properties energy

    Thumbnail
    View/Open
    MgH2 and LiH metal hydrides crystals as novel hydrogen storage material electronic structure and optical properties energy-abstract.pdf (126.9Kb)
    Date
    2013-09
    Author
    Ali Hussain, Reshak, Prof. Dr.
    Metadata
    Show full item record
    Abstract
    We have performed a comprehensive theoretical investigation of the electronic band structure, density of states, electronic charge density and optical properties of the novel hydrogen storage material MgH2 and LiH compounds. The all electron full potential linear augmented plane wave method was employed. The local density approximation (LDA), the generalized gradient approximation (GGA) and the Engle Vosko generalize gradient approximation (EVGGA) were used to treat the exchange-correlation potential. The calculations show that the MgH2 compound is indirect gap semiconductor as the conduction band minimum (CBM) situated at R point of the Brillouin zone (BZ), while the valence band maximum (VBM) located between Λ and Γ points of the BZ, whereas LiH is a direct gap material as the CBM and the VBM located at X point of BZ. The values of the calculated energy band gap of MgH2 (LiH) compounds are 3.372 (2.769), 3.735 (3.067) and 5.104 (4.488) eV for LDA, GGA, and EVGGA, respectively. From the partial density of states and the electronic charge density in (0 0 1) and (1 0 1) crystallographic planes we conclude that there exists strong ionic bonds. The bond lengths were calculated and compared with the available experimental and theoretical results, our results show better agreement with the experimental values than the other theoretical results. The frequency dependent dielectric function's dispersions were calculated and analyzed so as to obtain further insight into the electronic structure. The calculated dielectric function's dispersions confirm the semiconducting nature of MgH2 and LiH compounds.
    URI
    http://www.sciencedirect.com/science/article/pii/S0360319913016480
    http://dspace.unimap.edu.my:80/dspace/handle/123456789/35393
    Collections
    • School of Materials Engineering (Articles) [553]
    • Center of Excellence for Geopolymer and Green Technology (CEGEOGTECH) (Articles) [130]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback