• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Bioprocess Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Bioprocess Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Leaf water status, proline content, lipid peroxidation and accumulation of hydrogen peroxide in salinized Chinese kale (Brassica alboglabra)

    Thumbnail
    View/Open
    Leaf water status, proline content, lipid peroxidation and accumulation of hydrogen peroxide in salinized Chinese kale (Brassica alboglabra).pdf (236.4Kb)
    Date
    2012
    Author
    Amin, Tayebimeigooni
    Yahya, Awang, Prof. Madya Dr.
    Maziah, Mahmood, Prof. Dr.
    Ahmad, Selamat, Dr.
    Zakaria, Wahab, Prof Dr
    Metadata
    Show full item record
    Abstract
    In responding to stress, plant cells may secrete compatible compounds and at the time demonstrate an increase in others which would reflect the status of reactive oxygen species (ROS) scavenging capacity of plants under oxidative stress. In this study the ability of four cultivars of Chinese kale (Brassica alboglabra) to tolerate salinity stress was evaluated. Four diverse cultivars of Chinese kale (cv. 'Standard kailan', 'Hong Kong kailan', 'Kale Curly Leaf' and Hong Kong stem flower') were subjected for 14 days to varying levels of NaCl, i.e. 0, 25, 50 and 75 mM in Hoagland's nutrient solution in a static aerated hydroponic system. Salinity induced changes in all assayed parameters. Leaf relative water content (RWC) was reduced by 7.6, 13.3 and 15.5% relative to the control as NaCl concentration increased at 25, 50 and 75 mM, respectively. In addition, accumulation of proline in leaf tissue was induced significantly at high NaCl concentration. However, 'Standard kailan' contained the lowest concentration of proline among cultivars. Salinity stress noticeably raised the concentration of H 2O 2 in leaves with their respective values of 47.5, 56.0 and 56.2% for 25, 50 and 75 mM compared to control. Almost similar response was also recorded for accumulation of malondialdehyde (MDA). The level of MDA in leaves, which represents the rate of lipid peroxidation process, was considerably increased under saline condition. Lower concentrations of H 2O 2 were found in leaf tissues of 'Standard kailan' and 'Hong Kong kailan' compared to those of 'Curly leaf' and 'Hong Kong stem flower'. The lowest amount of MDA in leaf tissues of cv. Standard kailan in comparison with others, suggests that the cv. Standard kailan is better protected from oxidative damage under salinity stress and being more tolerant.
    URI
    http://world-food.net/category/journals/2012/issue-2-2012/
    http://dspace.unimap.edu.my:80/dspace/handle/123456789/32062
    Collections
    • School of Bioprocess Engineering (Articles) [99]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback