Show simple item record

dc.contributor.authorTee-How, Loo
dc.contributor.authorKon, Song How
dc.date.accessioned2010-11-23T02:27:44Z
dc.date.available2010-11-23T02:27:44Z
dc.date.issued2010-06-02
dc.identifier.citationVol.2(20), p.267en_US
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/10259
dc.description1st Regional Conference on Applied and Engineering Mathematics (RCAEM-I) 2010 organized by Universiti Malaysia Perlis (UniMAP) and co-organized by Universiti Sains Malaysia (USM) & Universiti Kebangsaan Malaysia (UKM), 2nd - 3rd June 2010 at Eastern & Oriental Hotel, Penang.en_US
dc.description.abstractIt is well-known that eigenvalues of a symmetric linear operator on an n-dimensional real vector space are all real. In general, for a symmetric tensor field of type (1, 1) on a connected n-dimensional Riemannian manifold M, the eigenvalues at each point formed n real-valued functions. These eigenvalue functions are continuous but not necessarily differentiable on the whole of M. In the talk, we shall first discuss the differentiability of the eigenvalue functions and then discuss some of the applications to the Riemannian geometry of hypersurfaces.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.relation.ispartofseriesProceedings of the 1st Regional Conference on Applied and Engineering Mathematics (RCAEM-I) 2010en_US
dc.subjectSymmetric tensor fieldsen_US
dc.subjectRiemannian manifoldsen_US
dc.subjectEigenvalue functionsen_US
dc.subjectRegional Conference on Applied and Engineering Mathematics (RCAEM)en_US
dc.titleEigenvalue functions of symmetric tensorfields on Riemannian manifoldsen_US
dc.typeWorking Paperen_US
dc.publisher.departmentInstitut Matematik Kejuruteraanen_US
dc.contributor.urllooth@um.edu.myen_US
dc.contributor.urlshkon@um.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record