Comparison of artificial intelligence (AI) based models for sediment transport prediction using swot and statistical analyses
View/ Open
Date
2022Author
Jie, Chin Ren
Wei, Lee Foo
Zee, Kwong Kok
Hin, Lai Sai
Metadata
Show full item recordAbstract
The dynamics involved in sediment scour are complicated. Hence, it is a challenging task to create a general empirical optimisation algorithm for reliable sediment load estimation. This study aims to analyse the architectures of assorted artificial intelligence (AI) based model to predict suspended sediment load in fluvial system. An in-depth study on Artificial Neural Network (ANN), Adaptive NeuroFuzzy Inference System (ANFIS), and Support Vector Machine (SVM) was carried out. The
goal of this study is to evaluate the performance of AI-based models from various research using statistical as well as Strengths, Weaknesses, Opportunities, and Threats (SWOT) analyses. Three statistical measures of model prediction accuracy including coefficient of correlation (R), root mean square error (RMSE), and mean absolute error (MAE) were used. The results revealed that the SVM and ANFIS models outperformed the other soft computing and conventional models. It is concluded that the SVM and ANFIS models are preferred and may be successfully used to estimate the suspended sediment concentration for the research area.
Collections
- IEM Journal [310]