• Login
    View Item 
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Manufacturing Engineering (FYP)
    • View Item
    •   DSpace Home
    • Final Year Project Papers & Reports
    • School of Manufacturing Engineering (FYP)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization parameter effects on the quality surface finish of the three-dimensional printing (3D printing) Fused Deposition Modelling (FDM) process

    Thumbnail
    View/Open
    Abstract,Acknowledgement.pdf (195.9Kb)
    Introduction.pdf (201.7Kb)
    Literature Review.pdf (397.1Kb)
    Methodology.pdf (451.6Kb)
    Results and Discussion.pdf (460.1Kb)
    Conclusion and Recommendation.pdf (166.7Kb)
    Refference and Appendics.pdf (327.1Kb)
    Date
    2016-06
    Author
    Norazlin, Saari
    Metadata
    Show full item record
    Abstract
    Fused deposition modelling (FDM) is a process for developing rapid prototype (RP) objects according to numerically defined cross sectional geometry by depositing fused layers of material. This RP may used straight to the application. Therefore, this research has been done to optimize the best parameter towards better roughness on the surface. Plus, this research is to explore the influence of layer height, outline speed and extruder temperature with the surface roughness. An specimen has been proposed to fulfill the objective of the research. In order to build the specimen, it has been drawn by CAD. The, it was transfer to Standard Triangulation Language, (STL) file. The STL will read and the FDM will deposits the material from the bottom curve and build up the model to the top curve. In order to reduce experimental runs, Taguchi Method based on central composite design is adopted. L9 was used to run the specimen. Thus there is nine experiment that will run. Specimens are prepare to improve surface roughness of the 3D printing. The specimen was measured by Mitutoyo CS3000 525-780EI. Relations among responses and process parameters are determined and their validity is proved using analysis of variance (ANOVA). Response surface are analyzed to establish main factor effects and their interaction on responses. The specimen are proposed in flat and curve surface. For the result, it is stated that layer height was the main parameter that effects of the surface roughness, compare to the outline speed and extruder temperature.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/69834
    Collections
    • School of Manufacturing Engineering (FYP) [338]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback