• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Differentiate Characteristic EEG Tobacco Smoking and Nonsmoking

    Thumbnail
    View/Open
    Main article (670.7Kb)
    Date
    2019
    Author
    Lim Chee, Chin
    Asmiedah, Muhamad Zazid
    Chong Yen, Fook
    Vikneswaran, Vijean
    Saidatul Ardeenawatie, Awang
    Marwan, Affandi
    Lim Sin, Che
    Metadata
    Show full item record
    Abstract
    Electroencephalogram (EEG) signal is non-stationary signal that have low frequency component and amplitude compared to stationary signal. Therefore, present of unwanted substance (nicotine) in Tobacco smoking will alter the brain electrical activity. This paper is proposed to investigate the changes of EEG signal with the present of nicotine and identify the difference brain signal between smoker and non-smoker. There are 20 males (10 smokers, 10 non-smokers) are selected. The subjects are chosen based on inclusion criteria (abstained from smoking within 6 hours before experiment, and do not take any medication and caffeine). The recorded EEG signal contain a lot of noise such as head moving, muscle movement, power line, eyes blinks and interference with other device. Butterworth filter are implemented to remove the unwanted noise present in the original signal. Bandpass filter is used to decompose the EEG signal into alpha, theta, delta and beta frequency. Then, eight features (mean, median, maximum, minimum, variance, standard deviation, energy and power) have been extracted by using Fast Fourier Transform (FFT) and Power Spectral Density (PSD) method. Then, four different type of kernel function (‘Linear’, 'BoxConstraint', ‘Polynomial’ and ‘RBF’) of SVM classifier are used to identify the best accuracy. As a result, PSD (97.50%) have higher performance accuracy than FFT (97.33%) by using Radial Basis Function (RBF) of Support Vector Machine (SVM). Smoking activity caused slightly increase theta and delta frequency. Smoking is activated of five electrode channels (Fp1, Fp2, F8, F3 and C3) and caused additional emotion such as deep rest, stress releasing and losing attention. The attention of smokers can be measure by using stroop test. After smoking activity, smokers become more energetic and increase the time response (1.77 s) of stroop test compared to non-smokers (2.96 s). The result is calculated by using statistical analysis (t-test). The p-value is 0.037 which is less than 0.05. Thus, the null hypothesis is rejected and conclude there is significant different between smokers and non-smoker performance before and after smoking task.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/69032
    Collections
    • School of Mechatronic Engineering (Articles) [319]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback