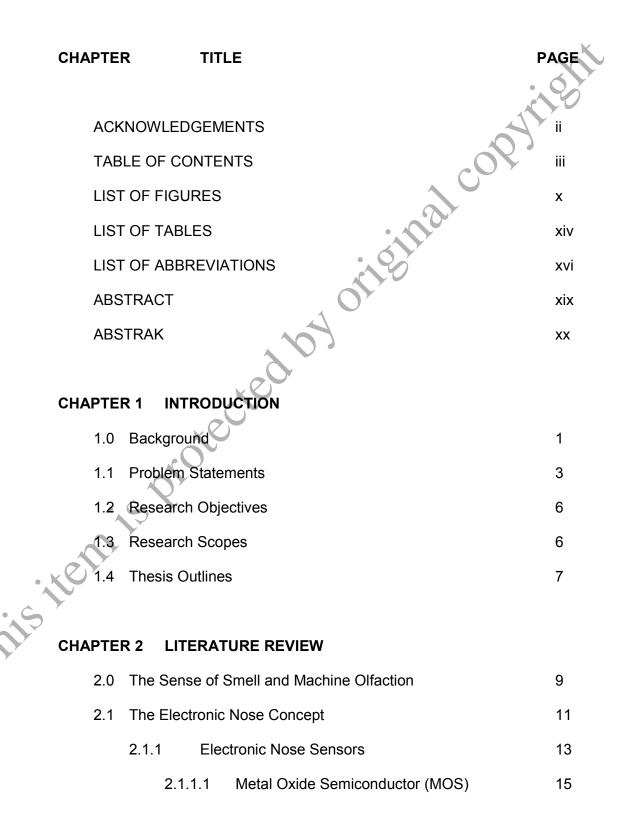


UNIVERSITI MALAYSIA PERLIS

ACKNOWLEDGEMENTS

The journey towards the completion of this thesis was full of unexpected challenges and it is almost impossible to complete this thesis single-handedly without the help and support of others. I would like to give heartfelt thanks to everyone who has provided me with such support.

To my supervisors, Prof Dr Ali Yeon Md Shakaff and Assoc Prof Dr Abdul Hamid Adom.


To my parents, sisters and brother

To advance robotic lab members.

To dear friends.

Last but not least, to Yayasan FELDA, sponsor of this research.

TABLE OF CONTENTS

	2.1.1	1.2 Conducting Polymer (CP)	18
	2.1.2	Odour Delivery System	19
2.2	Data Proc	cessing	21
	2.2.1	Dimension Reduction	22
	2.2.2	Principle Component Analysis	23
	2.2.3	Normalisation	24
2.3	Pattern R	ecognition	26
	2.3.1	The Artificial Neural Networks	27
	2.3.2	The Multilayer Perceptron	30
	2.3.3	Radial Basis Function	31
	2.3.4	Training Algorithm	33
2.4	Electronic	Nose Applications in Agricultural Research	35
2.5	Ganodern	na Boninense	36
	2.5.1	Current Method for Ganoderma Boninense	38
	5	Detection	
A	S 2.5.2	2.1 DNA probes	38
0	2.5.2	2.2 Polymerase Chain Reaction	38
·KOY	2.5.2	2.3 Enzyme-Linked Immunosorbent Assay	39
tils ter		(ELISA)	
2.6	Productio	n of Fungi Volatiles	40
2.7	Summary		41
\bigcirc			

CHAPTER 3 UTILISING COMMERCIAL ELECTRONIC NOSE AND

ARTIFICIAL INTELLIGENCE

3.1	The Cyrar	nose 320	42
	3.1.1	Cyranose 320 Pattern Recognition	46
	3.1.2	Identification	47
	3.1.3	Experimental Setup	48
3.2	Sensor Da	ata Pre-processing	50
	3.2.1	Data Analysis	50
	3.2.2	Dimension Reduction	51
	3.2.3	Normalisation	57
3.3	Artificial N	leural Networks (ANN)	58
	3.3.1	ANN Data	59
	3.3.2	ANN Size	60
	3.3.3	Activation Function	61
	3.3.4	ANN Training and Validation	62
•	3.3.5	ANN Testing	64
	3.3.6	ANN Platform	67
3.4	Evaluation	n of Embedded Cyranose Pattern Recognition	67
	Compared	d to ANN	
	3.4.1	Methodology	68
	3.4.2	Data Profile Results	70
	3.4.3	Embedded C-320 Pattern Recognition Results	71
	3.4.4	Principle Component Analysis (PCA) Results	73
	3.4.5	ANN Pattern Recognition Results	75

CHAPTE	R4 FEA	SIBILITY OF USING ELECTRONIC NOSE AND AI	NN TO
	DET	ECT THE PRESENCE OF GANODERMA	95
4.1	Ganoderr	na boninense Fruiting Bodies and Ambient	81
	Discrimina	ation Using ANN with Laboratory Data	
	4.1.1	Sample Preparation and Data collection	81
	4.1.2	Data Profile	82
	4.1.3	Data Consistency	83
	4.1.4	ANN Training and Testing	85
	4.1.5	ANN Training and Testing Results	86
4.2	Data Colle	ection for the ANN Testing / Detection of the	87
	Presence	of Ganoderma Odour using a Few Types of	
	Paramete	rs	
4.3	The ANN	Models of Ganoderma boninense and Ambient	89
•	Testing U	sing Different Types of Parameters to Verify the	
	Presence	of Ganoderma boninense Odour	
· KOY	4.3.1	The ANN Testing / Detection Results	90
4.4	Ganoderr	ma boninense Fruiting Bodies and the Air	91
C.D.	Surroundi	ing Healthy Trunk Odour Discrimination Using ANN	
	with On-s	ite Data	
\bigcirc	4.4.1	Data Profile	92
	4.4.2	Data Consistency	92

	4.4.3	ANN Training and Testing Results	93
	4.4.4	The ANN models testing using different types of	95
		parameters to verify the presence of Ganoderma	X
		boninense odour	9
		4.4.4.1 The Testing / detection Results	96
4.5	Summary	JCOP.	97
CHAPTEI	R 5 PLA	NT DISEASE DETECTION USING ELECTRONIC	NOSE
		ANN	
5.1	Investigat	ion of Infected Oil Palm Tree Discrimination using	100
	On-site Da	ata	
5.2	On-site O	dour Recording and Sample Collection Procedures	101
5.3	Laborator	y Data Collection	104
5.4	ANN Train	ning and Testing	104
5.5	Results a	nd Discussions	106
•	5.5.1	The Consistency and Data Profile	106
	5.5.2	The Comparison between Odours Captured	109
		On-site and in the Laboratory	
is to	5.5.3	Principle Component Analysis Results	111
(1)	5.5.4	ANN Training Results	112
	5.5.5	The System Testing Results	114
5.6	Summary		116

6.1	Commerc	ial Electronic nose and Low Cost Alternative	119
	6.1.1	The Electronic Nose Design Considerations	121
	6.1.2	The Basic Operation of the In-house	123
		Electronic Nose	y -
6.2	The Syste	em Description	125
	6.2.1	The Sensor Array	125
	6.2.2	The Odour Capturing Module	126
	6.2.3	The Microprocessor	127
	6.2.4	Pattern Recognition	129
6.3	Hardware	Development	129
6.4	Software	Development	130
6.5	Prototype	and Odour Capturing Module Development	132
	and Fabri	cation	
6.6	Graphic L	Jser Interface	134
6.7	System Ir	tegration and Testing	136
6.8	The Labo	ratory Testing Results	138
. 101	6.8.1	Data Consistency	138
ANIS Y	6.8.2	Data Profile	139
	6.8.3	ANN Training Results	140
	6.8.4	The Detection Results	141
6.9	The On-s	ite Testing Results	142
6.10	Summary		144

CHAPTER 6 DEVELOPMENT OF IN-HOUSE ELECTRONIC NOSE

CHAPTER 7 CONCLUSIONS

- 7.1 Odour Detection Issues
- 7.2 Future Works

REFERENCES

APPENDIX A

The Parameter Setup for Cyranose 320

Experimental Procedure When Using the Cyranose 320

- 1. The Data Collection General Procedure
- 2. The C-320 Training Pattern Recognition Procedure

150

152

al cop.

3. The C-320 Identify Procedure

APPENDIX B

The In-house E-nose Circuit Layout

APPENDIX C

The In-house E-nose Program Flow Chart

LIST OF FIGURES

	FIGURES	TITLE	PAGE
	Figure 2.1	The analogy between biological and artificial noses	12
	Figure 2.2	The basic electronic nose block diagram	13
	Figure 2.3	Model of inter-grain potential barrier A	16
		(in the absence of gases)	
	Figure 2.4	Model of inter-grain potential barrier B	17
		(in the presence of gases)	
	Figure 2.5	A representation of the composite sensor material	19
		responding during the analyte exposure	
	Figure 2.6	The sample flow system	20
	Figure 2.7	Electronic nose data processing block diagram	21
	Figure 2.8	A basic neuron model	29
	Figure 2.9	Activation functions	30
	Figure 2.10	Architecture of MLP	31
•	Figure 2.11	The Radial Basis Function ANN	32
5	Figure 2.12	The Ganoderma boninense fruiting body	37
	Figure 3.1	Cyranose 320	43
	Figure 3.2	The schematic of the purge cycle	45
	Figure 3.3	The schematic of sample cycle	45
	Figure 3.4	Cyranose 320 setup for lab data collection	49
	Figure 3.5	Cyranose 320 setup for on-site data collection	50
	Figure 3.6	The steps to get the dimension reduction value	56

CTH

	Figure 3.7	The flow of neural network training process	63
	Figure 3.8	The flow of testing and identification process	65
	Figure 3.9	Vial used in this experiment	68
	Figure 3.10	Profile of essence samples	70
	Figure 3.11	CDA results	71
	Figure 3.12	The PCA result	73
	Figure 3.13	The ANN training result using eight hidden nodes	76
	Figure 4.1	Ganoderma in a glass beaker	82
	Figure 4.2	The ambient and Ganoderma boninense data profiles	83
	Figure 4.3	Data consistency of Ganoderma boninense and ambient	84
		odour	
	Figure 4.4	The bored trunk	88
	Figure 4.5	Ganoderma boninense at the oil palm trunk	89
	Figure 4.6	Ganoderma boninense and air surrounding healthy trunk	92
		odour profile	
	Figure 4.7	Data consistency of the on-site data of Ganoderma	93
		boninense and air surrounding the healthy trunk	
•	Figure 4.8	ANN training results	94
. 5	Figure 5.1	The research areas in oil palm plantation	101
	Figure 5.2	Data collection point for an oil palm tree	102
	Figure 5.3	The air around the tree trunk data and sample collection	103
\bigcirc	Figure 5.4	The plots of the sensors response for the different	107
		points / trees of the same classification for on-site data	
		collection	

	Figure 5.5	The plots of the sensors response for the different	108
		points / trees of the same classification for laboratory	
		data collection	X
	Figure 5.6	(a) profile of healthy and infected data for odour	109
		surrounding the trunk. (b) profile of healthy and	1
		infected for odour of bored trunk. (c) profile of	
		healthy and infected for odour of soil	
	Figure 5.7	The comparison between on-site and laboratory odour	110
		profiles	
	Figure 5.8	PCA result	111
	Figure 5.9	ANN training result for odour surrounding the trunk	114
	Figure 6.1	FOX 2000 from Alpha MOS	120
	Figure 6.2	Sensors' chamber	122
	Figure 6.3	(a) The data collection operation (b) The ANN training	124
	A	operation (c) The detection/recognition operation	
	Figure 6.4	The odour capturing module	127
	Figure 6.5	The in-house electronic nose block diagram	128
٠	Figure 6.6	The Sensor Circuit for TGS 825	130
.5	Figure 6.7	The CAD drawing of the electronic nose showing the	133
(D)		internal components	
	Figure 6.8	The completed in-house electronic nose	133
	Figure 6.9	The main GUI window	135
	Figure 6.10	The sensor response window	135
	Figure 6.11	Sample in beaker	137

Figure 6.12 (a) The consistency of control condition data. 139

(b) The consistency of ganoderma data

- Figure 6.13 Profile data of control condition and ganoderma odour
- Figure 6.14 (a) The ANN training result. (b) The plot of SSE conducted at the end of every epoch during the ANN Ô tree 7) in our burn of the out of training

143

LIST OF TABLES

	TABLES	TITLE	PAGE
	Table 2.1	Typical materials used as sensors	14
	Table 3.1	Identification rating descriptions	47
	Table 3.2	Classification designation for the two outputs for two	60
		samples	
	Table 3.3	Classification designation for the four outputs for four	61
		samples	
	Table 3.4	Number of training, validation and testing data for each	69
		sample	
	Table 3.5	The Identification result using Cyranose 320	72
	Table 3.6	PCA output for dimension reduction	74
	Table 3.7	The percentage of accuracy for testing using eight	77
	.5	hidden nodes	
	Table 4.1	Number of training, validation and testing for each samp	le 85
•	Table 4.2	Target used in the ANN training	85
.5	Table 4.3	The ANN training results	86
A DI	Table 4.4	The ANN testing results with percentage of accuracy	87
	Table 4.5	Number of data for each parameter	90
	Table 4.6	The detection of the presence of Ganoderma boninense	90
		based on parameters	
	Table 4.7	Number of data for each parameter	91

Table 4.8	The ANN testing results with percentage of accuracy	95
Table 4.9	The detection results for the ANN model with hidden	96
	node 16 and 20	X
Table 5.1	The number of training, validation and testing data for	105
	each parameters	y -
Table 5.2	Target used in the ANN training	105
Table 5.3	PCA coefficient	112
Table 5.4	The percentage of accuracy using testing data set	115
Table 5.5	The percentage of accuracy / recognition of testing that	116
	using the new data set	
Table 6.1	Sensor and its characteristics	125
Table 6.2	Button descriptions	136
Table 6.3	The ANN testing result	141
Table 6.4	The detection result	142
othistentis	ere e	

LIST OF ABBREVIATIONS

- otional ADC Analog to Digital Converter =
- ANN **Artificial Neural Networks** =
- ΒP = Backpropagation
- BSR **Basal Stem Rots** =
- C-320 Cyranose 320 =
- CA Cluster Analysia =
- CAD Computer-aided Design =
- Canonical Discriminant Analysis CDA =
- CNS Central Nervous System =
- **Communications Port** COM =
- CP Conducting Polymer =
- DAS Dimension Auto-scaling
- DC Data Collection
- DNA Deoxyribonucleic Acid =
- EEPROM = Electrically Erasable Programmable ROM
- **ELISA** = Enzyme Linked Immunosorbant Assay
- E-nose = Electronic Nose
- **FELDA** Federal Land Development Authority =
- FIS Fuzzy Interefence System =
- GC = Gas Chromathography
- GC-MS Gas Chromathography – Mass Spectrometry =

GUI =	Graphic User Interface
-------	------------------------

- HPLC High-performance Liquid Chromatography =
- otional copyright HPTLC High-performance Thin Layer Chromatography =
- KNN = K-nearest Neighbour
- LC-MS Liquid Chromatography Mass Spectrometry =
- LCD = Liquid Crystal Display
- LDA = Linear Discriminant Analysis
- MLP Multilayer Perceptron =
- ml mililitre =
- MOS Metal Oxide Sensor =
- MSE Mean of Squared Error =
- Odour Capturing Module OCM =
- PARC Pattern Recognition =
- **Personal Computer** PC =
- PC1 Principle Component 1 =
- PC2 Principle Component 2
 - PCA Principle Component Analysis
 - PĆB Printed Circuit Board =
 - PCR Polymerase Chain Reaction =
- PLS = Partial Least Squares
- POD Proper Orthogonal Decomposition =
 - Ps = **Power Comsumptions**
 - QCM Quartz Crystal Microbalance =
 - RBF **Radial Basis Function** =
 - Load Resistor R_L =

- ain one on the strength of the RS232 Recommended Standard 232 =

ABSTRAK

Kajian Kebolehlaksanaan Menggunakan Hidung Elektronik Untuk Mengesan Penyakit BSR di Ladang Kelapa Sawit

Industri pertanian telah lama bergantung kepada kepakaran manusia untuk mengesan penyakit pokok. Walau bagaimanapun, manusia mengambil masa yang lama untuk menjadi seorang pakar, tidak konsisten dan mempunyai kelemahan. Kerja yang dibentangkan ini adalah kerja yang dilakukan menggunakan hidung elektronik menggabungkan kepintaran buatan untuk mengesan penyakit pokok, khususnya, penyakit pangkal batang reput yang diakibatkan oleh Ganoderma boninense, sejenis kulat yang mengancam ladang kelapa sawit di Asia Tenggara. Hidung elektronik komersial, Cyranose 320, digunakan sebagai pengesan hadapan manakala rangkaian neural buatan yang dilatih dengan algoritma Levenberg-Marquadt diguna untuk membuat keputusan. Untuk peringkat pertama, satu pembelajaran tentang pengelasan corak terbenam pada Cyranose 320 dan rangkaian neural buatan telah dijalankan menggunakan beberapa jenis bauan. Peringkat ini akhirnya mengenalpasti bahawa ANNs lebih baik dari pengelasan corak terbenam dari segi ketepatan dan ia patut digunakan untuk experimen yang akan datang. Peringkat kedua melibatkan pengesanan kulat Ganoderma boninense di dalam makmal dan di ladang kelapa sawit. Peringkat ini membuktikan bahawa bau kulat ini boleh dikesan selepas diuji dengan menggunakan beberapa jenis parameter bau. Peringkat seterusnya ialah untuk mendiskriminasi pokok kelapa sawit yang sihat dengan berpenyakit di dalam ladang. Kerja yang dijalankan telah menunjukkan bahawa penggabungan antara hidung elektronik dengan ANNs mempunyai kebarangkalian-boleh untuk mendiskriminasi pokok berpenyakit di ladang. Hasil kajian ini juga digunakan untuk membangunkan hidung elektronik sendiri untuk kajian asas dan menyediakan hidung elektronik Kesimpulannya, kerja yang menggunakan hidung yang berkos rendah. elektronik and ANNs ini berkeupayaan untuk mengesan dan mendiskriminasi penyakit BSR di dalam makmal dan ladang.

ABSTRACT

Feasibility Study of Utilising Electronic Nose to Detect BSR Disease in Oil Palm Plantation

The agricultural industry has been, for a long time, dependent upon human expertise to detect plant disease. However, human experts may take years of training and can be inconsistent, as well as prone to fatigue. Presented in this thesis is the work conducted on utilising electronic nose incorporating artificial intelligence to detect plant malaise, specifically, basal stem rot (BSR) disease that is caused by Ganoderma boninense, a type of fungi affecting oil palm plantations in South East Asia. A commercial electronic nose, Cyranose 320, was used as the front-end sensors with artificial neural networks trained using Levenberg-Marguardt algorithm employed for decision making. For the first stage, a study on Cyranose 320 embedded pattern recognitions and artificial neural networks (ANNs) was conducted using a few types of essences. This stage confirmed that the ANNs is better than the embedded pattern recognitions in terms of accuracy and hence should be used for the next experiments. The second stage involved the Ganoderma boninense fruiting bodies detection in laboratory and oil palm plantation. This stage proved that the fungi odour can be detected after being tested using a few types of odour parameter. The next stage is to discriminate the healthy and non-healthy oil palm trunk in the plantation. The conducted work indicates that the combination of the electronic nose and ANNs has the ability to discriminate the infected trunk. The findings of the work were also used to develop an in-house low cost electronic nose to support further fundamental study and implementations. As a conclusion, this work confirms that it is feasible to utilise the electronic nose and ANNs to detect and discriminate the BSR disease both in the laboratory and in the plantation. Thist

CHAPTER 1

INTRODUCTION

Pyriog

1.0 Background

Odour is a distinctive smell, a lingering quality or impression (Soanes, C. et al, 2005). It functions to signal pleasure, avoidance, sexual attraction and many others. Odours are also called smells, which can refer to both pleasant and unpleasant odours. The terms fragrance, scent, or aroma are used primarily by the food and cosmetic industry to describe a pleasant odour, and are sometimes used to refer to perfumes. In contrast, stench, reek, and stink are used specifically to describe unpleasant odour.

Odours and volatile compounds have been widely used in a variety of studies. For example, the agricultural industry has been, for a long time, dependent upon human expertise in using odour for classification, grading, differentiating and discriminating different types of produce. The odour was used to determine the stage of fruit ripeness as well as the state of health of crops (Brezman, et. al, 2005; G'omez, et. al, 2006; Keller, et. al, 1995; Marrazzo, 1999; Md Salim, et. al, 2005).

Odour analysis traditionally involves the use of a panel of human sensory analyst (Shafiqul Islam, 2006). The former uses qualitative analysis, where the difference in odours detected, even complex combinations of volatiles, is discriminated by perception and feels based on experience, and not quantitative analysis. The use of human panellists is not, however, without disadvantages. Human panellists are prone to fatigue, inconsistencies as well as costly, in addition to requiring long training periods. Also, the decisions made by human panellists may be subjective, and not suitable for certain types of analyses such as those involving toxic organic molecules.

The second method is to use advance analytical instruments in the laboratories (Shafiqul Islam, 2006). These techniques can give very detailed information about the precise contents of the odour. These classical analytical techniques involve gas chromatography (GC-MS), liquid chromatography mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), high-performance thin layer chromatography (HPTLC) and etc. Since odour is usually composed of complex mixture of volatiles, such techniques are too cumbersome for practical everyday applications and costly to set-up. Also, many volatile chemicals are of very minute quantity and beyond their detection limit. Moreover, the relationship between the physical and chemical properties of the odourant molecules and their sensory impact is still unclear, in-spite of a number of research efforts.

In addressing these problems and limitations, a device that mimics the mammalian olfactory system commonly referred to as electronic nose (e-nose) has been developed. This device consists of headspace sampling, gas sensor array and pattern recognition modules to generate signal pattern that are used to characterise odours, and achieved through qualitative analysis (Keller, 1995).

To some extent, e-nose provides rapid odour analysis and addresses the issue of subjectivity of the human sensory technique. The applications of these devices are wide ranging, from agricultural applications to solving environmental issues (Brezman, et. al, 2005; G´omez, et. al, 2006; Keller, et. al, 1995; Laszlo, 2005; Marrazzo, 1999; Masila, 1998; Md Salim, et. al, 2005).

The agricultural industry can benefit tremendously from the use of such systems as the e-nose. It provides the flexibility and rapid training of qualitative analysis of a variety of odours. Hence the use of this system may replace traditional methods that are labour intensive, inconsistent, sometimes impractical and time consuming (Md Salim, et. al, 2005). Among the applications of the e-nose for the agricultural industry are to assist product quality monitoring, fruit ripeness determination, inspection of fish as well as other post-harvest activities (Brezman, et. al, 2005; G'omez, et. al, 2006; Keller, et. al, 1995; Marrazzo, 1999; Md Salim, et. al, 2005).

1.1 **Problem Statements**

The oil palm (*Elaeis guineensis* Jacq.) tree is a leading source of edible vegetable oil production in the world, with production figures of more than 32 million tonnes of oil in 2003 (Adom, A.H. et al, 2007). In Malaysia, the production of palm oil has exceeded that of natural rubber, and its importance has been further boosted by the introduction of bio-diesel (Singh, H. et al, 2006).