

copyrie **BRAIN MACHINE INTERFACE CONTROLLED ROBOT CHAIR**

by

HEMA C.R. (0640610082)

A thesis submitted In fulfilment of the requirements for the degree of Doctor of Philosophy

> **School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS** 2010

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS

Date :	Date :
(NEW IC NO. / PASSPORT NO.)	NAME OF SUPERVISOR
E 2063844	
SIGNATURE	SIGNATURE OF SUPERVISOR
1S	
terr	Certified by:
of years, if so requested above	e).
part for the purpose of research or academic exchange only (except during a per	
I, the author, give permission to the L	JniMAP to reproduce this thesis in whole or in
hard copy or or	n-line open access (full text)
✓ OPEN ACCESS I agree that m	y thesis is to be made immediately available as
where research w	
Act 1972)*	ed information as specified by the organization
	fidential information under the Official Secret
	ary of UniMAP. This thesis is classified as:
I berefy declare that the thesis beco	mes the property of Universiti Malaysia Perlis
	er 1 - 2009/2010
ROBOT	
Date of birth : 18.09.66 Title : BRAIN M	ACHINE INTERFACE CONTROLLED

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

First I wish to thank Brigedier Jeneral Dato' Profesor Dr. Kamarudin Hussin, the Vice Chancellor of Universiti Malaysia Perlis for his constant encouragement and facilities provided at the university for the completion of this research.

I am greatly indebted to my main supervisor Professor Dr. Sazali Yaacob, Deputy Vice Chancellor, Academics and International, UNIMAP, for his valuable guidance, inspiring advice and continued encouragement at all stages of this thesis work. I would like to place on record my gratitude and sincere thanks to Professor Sazali for being a great supervisor and for the absolute support extended to me, during the completion of this work and during all other times in the past.

I am also grateful to my second supervisor, Assoc. Prof. Dr. Abdul Hamid Adom, Dean School of Mechatronic Engineering UNIMAP, for his support, timely suggestions and facilities provided at the school, for the completion of this work. I thank him for constantly encouraging me to complete this work.

A special thanks goes to my third supervisor Professor Dr. Nagarajan R., School of Mechatronic Engineering, UNIMAP, for all the guidance and fruitful discussions which helped me to finish this work. His timely advice and careful study during the preparation of this thesis have greatly helped me in the successful completion of this thesis. I am indebted to him for sharing his vast knowledge and experience with me and for teaching me to write academic papers.

i

I wish to thank the Malaysian Ministry of Higher Education for providing the research grants, 9003 00167, 9003 00187, 9003 00081 under the FRGS Scheme, which funded this research work.

My sincere thanks and appreciation to my student Mr. Erdy Sulino Muslim Tan for his kind help during various occasions and to the numerous student subjects for their patience and co-operation.

Last but not the least I owe my deepest gratitude to my family: my husband Dr. Paulraj M.P. who has been and still is a great teacher, friend philosopher and guide; my charming son Vishnuvardhan for being understanding and for listening to my complaints and frustrations for the past four years; my father Mr. Radhakrishnamurthy who has been a role model and an inspiration all my life.

TABLE OF CONTENTS

Acknowledgements	i
Table of Contents	iii
List of Tables	х
List of Figures	xi
List of Abbreviations	xiii
List of Symbols	XV
Abstract (BM)	xvi
Abstract (English)	xvii
Abstract (English) 1. INTRODUCTION 1.1. Introduction 1.2. Goal of a BMI system	
1. INTRODUCTION	1
1.1. Introduction	1
1.2. Goal of a BMI system	2
1.3. Brain Machine Interface Design	3
1.4. Thesis Objectives	4
1.5. Brain Machine Interface Controlled Robot Chair- Scope of Thesis	7
2. BRAIN MACHINE INTERFACE TECHNIQUES AND	
NEUROPHYSIOLOGICAL BACKGROUND	11
2.1. Introduction	11
2.2. Disorders of the Motor Nervous System	12
2.2.1. Amyotrophic Lateral Sclerosis	13
2222. Multiple Sclerosis	13
2.2.3. Stroke	13
2.2.4. Parkinson's Disease	14
2.2.5. Paralysis	14
2.3. Several Techniques to Achieve a BMI	15
2.3.1. Measurement Techniques	17
2.3.2. Subject or Machine Training	19
2.3.3. Synchronous and Asynchronous Systems	20
2.4. BMI State of Art	21
2.4.1. Invasive Methods	22
2.4.2. The Wadsworth BCI	22
2.4.3. The Thought Translation Device	22
2.4.4. The Graz BCI	23
2.4.5. The Martigny BCI	23

2.4.6. The Berlin Brain Computer Interface	24
2.4.7. Current trends in BMI based Wheelchair for	
Rehabilitation of the Disabled	25
2.5. Neurophysiological Background	27
2.5.1. Event Related Potentials	27
2.5.2. Motor Imagery or unstimulated brain signals	30
2.5.3. Oscillatory Features	31
2.6. Real versus Imaginary Movements	34
2.7. Preprocessing	35
2.7.1. Temporal Filters	36
2.7.2. Spatial Filters	36
2.7.3. Independent Component Analysis and Blind Source Separation	37
2.7.4. Common Spatial Pattern	38
2.8. Feature Extraction	39
2.8.1. Fourier Transform	39
2.8.2. Wavelets	39
2.8.3. Template Matching	40
2.8.4. Kalman Filter	41
2.8.5. Spike Detection	41
2.8.6. Autoregressive Models	41
2.8.7. Band Pass Filtering	42
2.8.8. Laplacian Filter	42
2.8.9. EEG Amplitudes	43
2.8.10. Asymmetry Ratios and Differences	43
2.8.11. Time-Space based Feature Extraction Methods	44
2.9. Classification	45
2.9.1. Properties of Classifiers	45
2.9.2. Linear classifiers	46
2.9.2.1. Linear Discriminant Analysis	46
2.9.2.2. Support Vector Machine	47
2.9.3. Hidden Makrov Models	48
2.9.4. Nearest Neighbour classifiers	49
2.9.4.1. k-Nearest Neighbours	49
2.9.4.2. Mahalanobis Distance	49
2.9.5. Neural Network based Classifiers	50
2.10.Summary	51

3.	EEC	G SIGNAL ACQUISITION AND PREPROCESSING	53
	3.1.	Introduction	53
	3.2.	The EEG Signal	54
	3.3.	EEG Recording Techniques	
		54	
		3.3.1. International 10-20 Electrode Placement System	55
	3.4.	Motor Imagery Task Data Set	57
	3.5.	Motor Imagery Recording Equipment Motor Imagery Experimental Paradigm	58
	3.6.	Motor Imagery Experimental Paradigm	58
		3.6.1. Synchronous BMI Paradigm	59
	3.7.	EEG Motor Imagery Signal Acquisition	60
		3.7.1. The Brain Regions Responsible for Movement	61
		3.7.2. Signal Recording	64
	3.8	EEG Preprocessing Techniques	67
		3.8.1 Artefacts in BMI Systems	67
	3.9	Preprocessing Techniques Proposed for Signal Segmentation and Denoising EEG Recording	69
		3.9.1 Segmentation 69	
		3.9.2 Temporal filtering using Custom Filters	70
	0.44	3.9.3 Spectral Analysis of the Denoised Motor Imagery Signal	71
	3.10) Summary	74
4	FEA	ATURE EXTRACTION ALGORITHMS FOR FOUR-CLASS BMI	75
	4.1)	Introduction	75
•	4.2	Band Power of EEG Rhythms	76
	4.3	Modified Principal Component Analysis on Segmented Signals	77
\bigcirc	4.4	Band power of Mu, Beta Rhythms using custom filters	79
	4.5	Parseval Energy Spectral Density Features	80
	4.6	Modified Eigen Vector Features	83
	4.7	Summary	84
5.	CLA	ASSIFICATION ALGORITHMS FOR SYNCHRONOUS BMI USING	
	NE	JRAL NETWORKS	85
	5.1	Introduction	85
		5.1.1 BMI Feature Properties	86

5.2.1 Static Neural Networks 87 5.2.2 Dynamic Neural Networks 88 5.3 Static Feed Forward Neural Network 89 5.4 Dynamic Elman Recurrent Neural Networks 90 5.5 Steps in Designing Neural Network Models 92 5.5.1 Step 1: Data Set Preprocessing 92 5.5.2 Step 2: Training and Testing sets 92 5.5.3 Step 3: Neural Network Paradigms 93 5.5.3.1 Number of Hidden Layers 93 5.5.3.2 Number of Output Neurons 94 5.5.3.3 Number of Output Neurons 95 5.5.4 Step 4: Evaluation Criteria 95 5.5.5 Step 5: Neural Network Training 96 5.5.5 Step 5: Neural Network Training 97
5.3 Static Feed Forward Neural Network 89 5.4 Dynamic Elman Recurrent Neural Networks 90 5.5 Steps in Designing Neural Network Models 92 5.5.1 Step 1: Data Set Preprocessing 92 5.5.2 Step 2: Training and Testing sets 92 5.5.3 Step 3: Neural Network Paradigms 93 5.5.3.1 Number of Hidden Layers 93 5.5.3.2 Number of Hidden Neurons 94 5.5.3.3 Number of Output Neurons 95 5.5.4 Step 4: Evaluation Criteria 95 5.5.5 Step 5: Neural Network Training 96 5.5.5.1 Number of Training Iterations
895.4Dynamic Elman Recurrent Neural Networks 905.5Steps in Designing Neural Network Models925.5.1Step 1: Data Set Preprocessing925.5.2Step 2: Training and Testing sets925.5.3Step 3: Neural Network Paradigms935.5.3.15.5.3.2Number of Hidden Layers935.5.3.35.5.3.45.5.45.5.45.5.55.5.55.5.55.5.1Number of Training965.5.15.5.1975.5.1985.5.1995.5.5
90 5.5 Steps in Designing Neural Network Models 5.5.1 Step 1: Data Set Preprocessing 5.5.2 Step 2: Training and Testing sets 5.5.3 Step 3: Neural Network Paradigms 5.5.3 Step 3: Neural Network Paradigms 5.5.3.1 Number of Hidden Layers 5.5.3 Number of Hidden Neurons 5.5.3.2 Number of Hidden Neurons 5.5.3.4 Transfer Functions 5.5.4 Step 4: Evaluation Criteria 5.5.5 Step 5: Neural Network Training 5.5.5.1 Number of Training Iterations 90 92 92 92 92 92 92 92 92 92 92
5.5.3 Step 3: Neural Network Paradigms935.5.3 Step 3: Number of Hidden Layers935.5.3.1 Number of Hidden Neurons945.5.3.2 Number of Hidden Neurons945.5.3.3 Number of Output Neurons955.5.4 Transfer Functions955.5.5 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5 Number of Training Iterations96
5.5.3 Step 3: Neural Network Paradigms935.5.3 Step 3: Number of Hidden Layers935.5.3.1 Number of Hidden Neurons945.5.3.2 Number of Hidden Neurons945.5.3.3 Number of Output Neurons955.5.4 Transfer Functions955.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5 Number of Training Iterations96
5.5.3 Step 3: Neural Network Paradigms935.5.3 Step 3: Number of Hidden Layers935.5.3.1 Number of Hidden Neurons945.5.3.2 Number of Hidden Neurons945.5.3.3 Number of Output Neurons955.5.4 Transfer Functions955.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5 Number of Training Iterations96
5.5.3.2 Number of Hidden Neurons945.5.3.3 Number of Output Neurons955.5.3.4 Transfer Functions955.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5.1 Number of Training Iterations96
5.5.3.2 Number of Hidden Neurons945.5.3.3 Number of Output Neurons955.5.3.4 Transfer Functions955.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5.1 Number of Training Iterations96
5.5.3.3 Number of Output Neurons955.5.3.4 Transfer Functions955.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5.1 Number of Training Iterations96
5.5.3.4 Transfer Functions955.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5.1 Number of Training Iterations96
5.5.4 Step 4: Evaluation Criteria955.5.5 Step 5: Neural Network Training965.5.5.1 Number of Training Iterations96
5.5.5 Step 5: Neural Network Training965.5.5.1 Number of Training Iterations96
5.5.5.1 Number of Training Iterations 96
E E C O The Double Outgoing Ordination Tradicing Algorithms 27
5.5.5.2 The Particle Swarm Optimization Training Algorithm 97
5.5.5.3 The Back Propagation Training Algorithm 99
5.6 Classifier Validation and Model Selection 102
5.7 Performance of a classifier 103
5.8 Summary 105
6. SYNCHRONOUS BMI: A TASK RECOGNITION APPROACH 106
6.1. Introduction 106
6.2. Synchronous BMI 107
6.3. An algorithm to design synchronous BMI 107
6.4. Evaluation of Static Feed Forward Neural Networks 108
6.4.1. SFFNN Design 1 108
6.4.2. SFFNN Design 2 109
6.4.3. SFFNN Design 3 111
6.5. Dynamic Elman Recurrent Neural Networks 113
6.5.1 DERNN Design 1 114
6.5.2 DERNN Design 2 115
6.5.3 DERNN Design 3 117

6.5.4 DERNN Design 4	118
6.5.5 DERNN Design 5	120
6.6 Statistical analysis of the synchronous BMI models	121
6.6.1 Comparison of BMI Designs using the MI Task Data Set	121
6.6.2 Comparison of Performance of ERNN classifier with that of other Synchronous BMI using Motor Imagery	122
6.7 Analysis on Sub-band Frequency versus Classification Performance	123
6.7.1 Results: Significance of Different Frequency sub bands for Classification	124
6.7.2 Classification accuracy using Mu, Beta and Gamma bands	128
6.8 Analysis on EEG Signals to Determine appropriate signal length	128
6.8.1 Results Analysis and Discussion	129
6.9 Summary	130
7. ASYNCHRONOUS BMI FOR A ROBOT CHAIR:	
DESIGN AND IMPLEMENTATION	132
7.1 Introduction	132
7.2 Asynchronous BMI design	133
7.2.1 Two-class Asynchronous BMI	134
7.2.2 Multi- class Asynchronous BMI	134
7.3 Modelling the ABMI	135
7.3.1 Overview	135
7.3.2 Feature extraction	136
7.3.3 Classification	136
7.3.4 Task Translation	136
7.4 Designing a Customized ABMI	137
7.4.1 Feature Extraction	138
7.4.2 Classification	138
7.4.3 Evaluation	138
7.4.4 Signal Translation: Maxone Algorithm	140
7.4.5 Single Trial EEG Evaluation for Customized ABMI	140
7.4.6 Generalization of the DERNN based Asynchronous BMI	141
7.4.7 Customized ABMI: Predictive Power Analysis	143
7.4.8 Evaluation of Customized ABMI using Bit Transfer Rate	144
7.4.9 Discussion	145
7.5 Designing the Generalized ABMI	146
7.5.1 Classification	146

		7.5.2 Evaluation	147
		7.5.3 Single Trial EEG Evaluation for Generalized ABMI	148
		7.5.4 Generalized ABMI: Predictive Power Analysis	149
		7.5.5 Evaluation of Generalized ABMI using Bit Transfer Rate	150
		7.5.6 Discussion	151
	7.6		152
	7.7	Robot Chair: Design and Implementation	154
		Robot Chair: Design and Implementation 7.7.1 Need for Automation in a Robot Chair 7.7.2 Collision Avoidance System Shared control Algorithm	155
		7.7.2 Collision Avoidance System	155
	7.8	Shared control Algorithm	156
	7.9	Summary	157
8	BM	I CONTROLLED ROBOT CHAIR: A QUANTITATIVE AND	
	QU	ALITATIVE STUDY IN INDOOR ENVIRONMENTS	158
	8.1	Introduction	158
	8.2	Real-time Asynchronous Experiment Design	159
		8.2.1 Navigation Protocol 1	160
		8.2.2 Navigation Protocol 2	162
		8.2.3 Navigation Protocol 3	163
		8.2.4 Navigation Protocol 4	164
		Training Sessions	165
	8.4	ABMI Indoor Experiment Results	165
		8.4.1 Results of Protocol 1	166
	•	8.4.2 Results of Protocol 2 and 3	168
•	Ś	8.4.3 Results of Protocol 4	172
	8.5	Discussion	175
	8.6	Exploring the Practical Use of ABMI in an Out- Of- Lab Environment	177
\bigcirc		8.6.1 Experiments at Exposition 1	177
		8.6.1.1 Tasks	177
		8.6.1.2 Feature extraction and classification	178
		8.6.1.3 The Experiment	178
		8.6.2 Experiments at Exposition 2	179
		8.6.2.1 Tasks	180
		8.6.2.2 Feature extraction and classification	180
	o =	8.6.2.3 The Experiment	181
8.		Summary	182

	9 CONCLUSION	184
	9.1 Designing a four-class control BMI using hand MI	184
	9.2 Designing asynchronous (self-paced) BMI	186
	9.3 Real-time BMI Robot Chair navigation in Indoor Environments.	186
	9.4 Outlook	187
	References	188
	Author's References	205
	Appendix A	209
	Appendix B	210
	Appendix C	211
	Appendix D	212
	. 01	
	010	
	6	
	×O	
	·····	
	01.	
	9.4 Outlook References Author's References Appendix A Appendix C Appendix D Appendix D Appendix D Appendix D	
\bigcirc		

LIST OF TABLES

Table No.	Description	Page No.
6.1	MI Classification Results of BP SFFNN using PCA for a four-	109
6.2	MI Classification Results of BP SFFNN using Segmented and non-segmented band powers for a four-class BMI	110
6.3	MI Classification Results of BP SFFNN using Mu and Beta band power and Parseval features for a four-class BMI	113
6.4	Classification performance of the PSO DERNN with Band power features	115
6.5.	Classification performance of the PSO DERNN with PCA features	115
6.6	Classification Performance of BP DERNN For the MI Data using PCA features	116
6.7	Classification Performance of BP DERNN for the MI Data using MEIG Features	118
6.8	Classification Performance of BP DERNN for the MI Data using Band Power and Parseval Features	119
6.9	Classification Performance of PSO DERNN for the MI Data using Band Power and Parseval Features	121
6.10	Comparison of the BMI designs using Motor Imagery	122
6.11	Comparison of the proposed four-class DERNN BMI and Other multiclass BMI in literature using MI	123
6.12	Classification Accuracy for Mu, Beta and Lower Gamma Frequency Bands	128
6.13	Classification Accuracy for Different EEG Signal Lengths	130
.7.0	Classification Accuracy of the SFFNN and DERNN classifier for subject S9	139
7.2	Classification Accuracy for Single–Trial MI of Subject S9	141
7.4	Classification Results of Generalized ABMI using Data of 10 subjects	147
7.5	Single trial EEG Classification Results for Ten Subjects using SFFNN and DERNN	149
7.6	Comparison of the proposed four-class asynchronous DERNN BMI and other multiclass ABMI in literature using Motor Imagery	152
8.1	Performance of Subjects for the Trajectory of Protocol 1	166
8.2	Performance of Subjects for the Trajectory of Protocol 2 and 3 for one of the sessions	172

LIST OF FIGURES

F	igure No.	Description	Page No.
	1.1	Architecture of a Brain Machine Interface for Robot Chair Control	4
	3.1	International 10 - 20 System of electrode placement profile view taken from a public domain source from (Brain master)	56
	3.2	EEG recording system used in the BMI experiments	59
	3.3	Functional Areas of the Brain (picture taken from public online source: Purves, Sadava & Orians)	62
	3.4	The motor homunculus in primary motor cortex (picture taken from http://www.thetutoradvantage.com/images/homunculus)	63
	3.5	Electrode positions for MI task data collection	65
	3.6	Plot of the MI signal of subject S9, recorded during one of the 10 second trial for four MI tasks	66
	3.8	Spectrogram of (a) raw signals and (b) filtered signals of subject S1 for four MI tasks	73
	5.1	Architecture of a three layered SFFNN	90
	5.2	Architecture of a three layered ERNN	91
	6.1	Plot of Classification Accuracy versus Training Rounds for the SFFNN classifier using PCA features of Subjects S3 and S9	109
CTHIS	6.2	Plot of Classification Accuracy versus Training Rounds for the SFFNN Classifier using Band power (segmented) features of Subjects S3 and S9	111
	6.3	Plot of Classification Accuracy versus Training Rounds for the SFFNN Classifier using Band power (segmented) features of Subjects S3 and S9	111
	6.4	Plot of Classification Accuracy versus Training Rounds for the SFFNN classifier Using Mu & Beta Band power and Parseval ESD features of Subject S3	113
	6.5	Plot of Classification Accuracy versus Training Rounds for BP DERNN using PCA of MI Data	117
	6.6	Plot of Classification Accuracy versus Training Rounds for BP DERNN using MEIG Features with MI Data of two Subjects	118
	6.7	Plot of Classification Accuracy versus Training Rounds for BP DERNN using Band Power and Parseval Features with MI	400
	6.8	Data of Subject S10 Average Classification Accuracy in percentage of a four-class BMI for ten sub bands for subject S9	120 125
	6.9	Average Classification Accuracy in percentage of four-class BMI for ten sub bands for subject S3	125
	6.10	Classification Accuracy in percentage versus training rounds for five [0.1 to 50 Hz] sub bands for subject S9	126
	6.11	Classification Accuracy in percentage versus training rounds for five [51 to 100Hz] sub bands for subject S9	126

6.12	Classification Accuracy in percentage versus training rounds For five [0.1 to 50 Hz] sub bands for subject S3	127
6.13	Classification Accuracy in percentage versus training rounds for five [51 to 100 Hz] sub bands for subject S3	127
_ /		
7.1	A schematic diagram of an Asynchronous BMI model	137
	Training Rounds versus Classification accuracy Plot for SFFNN and DERNN of Trial 1 for subject S9.	139
7.3	Training Rounds versus Classification accuracy Plot of SFFNN (trial 1) and DERNN (trial 2) for Generalized ABMI	148
7.4	Flow Diagram of the ABMI Robot Chair	153
7.5	(a)The ABMI – Robot Chair Prototype (b) the shared controller Board to control the robot chair	
	joystick	154
7.6	Ultrasonic Sensors used in the Collision Avoidance System	156
8.1	Subject seated on the ABMI Robot Chair	159
8.2	Specified Trajectories for Robot Chair Navigation of Protocol 1	161
8.3	Specified Trajectory for Robot Chair Navigation of Protocol 2	162
8.4	Specified Trajectory for Robot Chair Navigation of Protocol 3	163
8.5	Specified Trajectory for Navigation Protocol 4 Trajectory achieved for Navigation Protocol 2: (a) Subject S3	164
8.6	on Day 2 (b) Subject S3 on Day 3(trial 2)	170
8.7	Trajectory of Subject S9 on Day 3 for Navigation Protocol 2	170
8.8	Trajectory achieved for Protocol 3: (a) Subject S9 on Day 2;	170
0.0	(b) Trajectory of Subject S9 on Day 3 for Navigation Protocol 3	171
8.9	Trajectory of Subject S3 on Day 3 for Navigation Protocol 3	171
8.10	Trajectory for one of the sessions for Protocol 4 on day 1,	
	(a) Subject S9, (b) Subject S12 (c) Subject S3	173
8.11	Trajectory for one of the sessions for Protocol 4 on day 2	
8.12	(a) Subject S5, (b) Subject S3 (c) Subject S12 Trajectory of Subject S9 for Protocol 4 on day 2, (a) Trail 1, (b)	174
0.12	Trial 2	174
8.13	Trajectory for one of the sessions for Protocol 4 on day 3,	
	(a)Subject S5, (b) Subject S12 (c) Subject S3	175
8.14	Exposition 1 environment	178
8.15	Subjects driving the ABMI Robot Chair at the first Expo in a	
	crowded environment	179
8.16	Exposition 2 Environment	180
8.17	Subjects driving the ABMI Robot Chair at the second Expo	182

LIST OF ABBREVIATIONS

	ABMI	Asynchronous Brain Machine Interface
	AAR	Adaptive Auto-Regressive
	ALN	Adaptive Logic Network
	ALS	Amyotrophic Lateral Sclerosis
	ALSA	Amyotrophic Lateral Sclerosis Association
	AOR	Artifacts Occurrence Rate
	AR	Autoregressive Model
	ARMA	Autoregressive-Moving-Average Model
	BCI	Brain Computer Interface
	BLRNN	Bayesian Logistic Regression Neural Network
	BMI	Brain Machine Interface
	BP	Back Propagation
	CSP	Common Spatial Patterns
	CWT	Continuous Wavelet Transforms
	DERNN	Dynamic Elman Recurrent Neural Network
	DFT	Discrete Fourier Transform
	DWT	Discrete Wavelet Transform
•,	ECG	Electrocardiogram
	ECoG	Electrocorticography
	EEG	Electroencephalography
	EMG	ElectroMyoGram
	EOG 🔨	ElectroOcculoGram
	ERD	Event Related Desynchronization
	ERP	Event Related Potential
	ERS	Event Related Synchronization
	ESD	Energy Spectral Density
	FFT	Fast Fourier Transform
	FIR	Finite Impulse Response
	FIRNN	Finite Impulse Response Neural Network
	fMRI	Functional Magnetic Response Imaging
(\bigcirc)	FN	False Negative
	FP	False Positive
	GDNN	Gamma Dynamic Neural Network
	GMM	Gaussian Mixture Models
	HMM	Hidden Makrov Models
	IC	Intentional-Control
	ICA	Independent Component Analysis
	liR	Infinite Impulse Response
	kNN	K-Nearest Neighbors
	LDA	Linear Discriminant Analysis
	LRP	Lateralised Readiness Potential

LVC		Vector Quantization
MA	Ŭ	verage Model
MA	•	encephalography
ME	-	Eigen Vector Features
ML	Motor Ima	-
MN		uron Disorders
MS		
MS	-	Jare Error
NC	Non-Cont	
NIN		Institute of Neurological Disorders and Stroke
NIR		
NIR		ared Spectroscopy
NN	Neural	
NR		Eye Movements
P30		Detected At 3000 Milliseconds
PC/		Component Analysis
PD	1	n's Disease
PET		Emission Topography
PM		
PM		Actor Cortex
PSE	•	ectral Density
PSC		warm Optimization
RBF	<u> </u>	sis Function
REN		e Movements
RFL		
RP		ed Fisher's Linear Discriminant Analysis s Potential
SCF		tical Potentials
SCF		tical Potential
SEF		ed Forward Neural Network
SFF		ed Forward Neural Network
SM/		entary Motor Area
		tate Visual Evoked Potentials
STF	,	le Fourier Transform
SVE		Value Decomposition
SV	•	/ector Machines
TDN		ay Neural Network
TN	True Neg	-
TP	True Pos	
TTC		Translation Device
TTC	-	Translation Device
WH	Ŭ	ealth Organization

LIST OF SYMBOLS

	•	
	β	Beta
	μ	Mu Maan of each close a
	μς	Mean of each class <i>c</i>
	μV	Micro volt
	Σ	<i>m x n</i> diagonal matrix
	Ω	Frequency of a waveform
	c	class
	С	Central Lobe
	C3	Central Lobe electrode position for left hand
	C4	Central Lobe electrode position for right hand
	cm	Centimeters
	Cz	Central Lobe electrode position for legs
	Ex	Total Energy of a finite continuous time signal
	F	Frontal Lobe
	Hz	Hertz
	k	Gain Factor of a filter
	K	Kernel function
	Μ	<i>m</i> x <i>n</i> matrix
	Мс	Covariance matrix of class <i>c</i>
	mV	Milli volt
	N	Data length
	n	No. of mental activities (tasks)
	0	Occipital Lobe
	P	Parietal Lobe
	P	poles
	p_a	Mean recognition accuracy
Y	Т	Temporal Lobe
	T _{act}	EEG signal action period
	U	<i>m x m</i> unitary matrix
	V	n x n unitary matrix
	x	Feature vector
	$X_a(j\Omega)$	Discrete Fourier Transform of $x_a(t)$
	$x_a(t)$	Finite continuous time signal
	z	zeros

Ć

MESIN OTAK ANTARA MUKA MENGAWAL KERUSI ROBOT

ABSTRAK

Mesin Otak Antara Muka Mengawal Kerusi Robot: Mesin otak antara muka adalah sebuah alat hubungan otak manusia secara langsung untuk alat-alat seperti komputer, kerusi roda dan lengan palsu. Antara muka tersebut menyediakan satu saluran digit untuk komunikasi dan kawalan dalam ketiadaan saluran-saluran biologi dan oleh itu membantu dalam pemulihan mobiliti dan individu-individu hilang upaya bercakap. Dalam tesis ini, sebuah novel empat-kelas mesin otak antara muka direka bentuk untuk sebuah kerusi robot menggunakan jaringan saraf. Mudah dan protokol-protokol novel untuk memperolehi isyarat otak EEG daripada dua elektrod kulit kepala tidak invasif dibentangkan. Empat kerja berdasarkan imejan penggerak oleh pergerakan tangan kiri dan kanan adalah dicadangkan untuk mengawal arah bagi kerusi robot. algoritma novel untuk pemerolehan isvarat-isvarat imejan penggerak Satu menggunakan pergerakan tangan adalah dicadangkan. Prapemprosesan algoritma mudah diperkenalkan untuk membuang hinggar daripada isyarat-isyarat mentah. Jalurjalur frekuensi Mu, beta dan Gamma yang berkaitan dengan tindakan-tindakan adalah disari menggunakan penapis yang ditempa. Ciri-ciri baru penggerak berdasarkan bahagian-bahagian masa dan frekuensi isyarat-isyarat EEG adalah dicadangkan dan diuji dengan pengelas. Pengelasan isyarat-isyarat imejan empat tangan penggerak dibentangkan menggunakan jaringan saraf statik dan dinamik. Algoritma berasaskan pengoptimum kumpulan zarah dicadangkan bagi melatih jaringan saraf. Gabungan cadangan ciri-ciri dan pengelas statik dan dinamik dianalisis. Isyarat-isyarat dihimpun dari 10 subjek terlatih untuk digunakan dalam menganalisis segerak dan tak segerak. Satu maxone algoritma untuk reka bentuk BMI penterjemahan bagi isyarat-isyarat imejan penggerak tangan kepada pergerakan kerusi robot dibentangkan. Sebuah kerusi robot prototaip direka dan diantaramukan dengan tak segerak maju BMI. Ciri-ciri keselamatan disepadukan melalui satu sistem pengelakan pelanggaran untuk meningkatkan prestasi bagi kerusi robot. BMI mengawal kayu ria bagi kerusi robot menggunakan satu algoritma kawalan kongsi. Eksperimen-eksperimen masa-nyata adalah juga dipersembahkan menggunakan 10 terlatih dan 5 tak terlatik subjek untuk mensahihkan kebolehgunaan bagi mesin otak antara muka. Eksperimen-eksperimen dijalankan pada dua penjelasan (luar dari persekitaran makmal) dengan 25 subjek tak terlatih bagi menilai kemungkinannya dalam persekitaran kehidupan sebenar.

BRAIN MACHINE INTERFACE CONTROLLED ROBOT CHAIR

ABSTRACT

Brain Machine Interface Controlled Robot Chair: Brain Machine Interface is a device that links the human brain directly to devices such as computer, wheelchairs and prosthetic arms. Such interfaces provide a digital channel for communication and control in the absence of the biological channels and thus help in the rehabilitation of mobility and speech impaired individuals. In this thesis, a novel four-class brain machine interface (BMI) is designed for a robot chair using neural networks. Simple and novel protocols for acquiring brain EEG signals from two non-invasive scalp electrodes are presented. Four tasks based on motor imagery of left and right hand movements are proposed to control the directions of the robot chair. A novel algorithm for acquisition of motor imagery signals using only hand movements is proposed. Simple preprocessing algorithms are presented to remove noise from the raw signals. Mu, Beta and Gamma frequency bands related to the motor actions are extracted using customised filters. New features based on time and frequency components of the EEG signals are proposed and tested with classifiers. Classification of the four hand motor imagery signals is presented using static and dynamic neural networks. A particle swarm optimization based algorithm is proposed to train the neural networks. Combinations of the features proposed and the static and dynamic classifiers are analysed. Signals collected from 10 trained subjects are used in the analysis of synchronous and asynchronous BMI designs. A max-one algorithm for translation of the hand motor imagery signals into robot chair movements is presented. A prototype robot chair is designed and interfaced with the developed asynchronous BMI. Safety features are integrated through a collision avoidance system to enhance the performance of the robot chair. The BMI controls the joystick of the robot chair using a shared control algorithm. Real-time experiments are also presented using 10 trained and 5 untrained subjects to validate the applicability of the brain machine interface. Experiments were carried out at two expositions (out-of-lab environments) with 25 untrained subjects to assess its feasibility in real life environments.

This

CHAPTER 1

INTRODUCTION

1.1 Introduction

Controlling objects or machines by thought is a dream which is currently moving from science fiction to science and technology. The prospect of humans interfacing the mechanical world through brain-coupled devices and thereby controlling everyday machines through the process of mere thought is certainly appealing. The technology that can make this to happen is known as a Brain Machine Interface (BMI). Hans Berger in 1929 through his experiments on human Electroencephalography (EEG) introduced the idea that brain activity could be decoded and used as a communication channel. EEG is a technique which makes it possible to measure, on the scalp, micro currents that reflect the brain activity.

A promising class of applications of BMI are those concerning assistive devices for people with serious motor impairments. The classical interfaces, that disabled people commonly use to control or manipulate an assistive device, typically require the patient to have adequate control over one or more physical components of his or her body. Typically that would be one of the limbs: an arm, hand or finger. Bioprosthetic systems that are directly controlled through brain signals on the other hand could provide for a more natural extension of human capabilities. Especially in the case where the patient is completely paralysed, this technology may provide the only possible way for the patient to gain control over basic aspects of their daily life.

Amongst these the ability to control the personal mobility is generally considered as an important one. The reduction in mobility that many people experience, due to various impairments or simply due to the effects of ageing, often has a profound impact on the

person's independence, social activity and self esteem. For many people suffering from a diverse range of impairments, the primary device that could provide for that mobility is the electrical wheelchair. It is worth noting however, that in case of locked-in patients their highest priority is not mobility. Still, learning to drive complex devices such as a wheelchair will also lead to better communication and domotic tools. BMIs are also becoming more popular in the gaming and virtual reality sector for normal users. This thesis focuses on the development of a BMI system to control a robot chair as an assistive device for the mobility impaired people.

1.2 Goal of a BMI System

BMI research goes back to the early 1970s. At that time Jacques Vidal designed a brain-computer interface by a computer-based system that produced detailed information on brain functions and built the first brain computer interfaces based on visual evoked potentials (Vidal, 1973). During the last decade the definition and the goal of a BMI has been refined and specialized. Definition of a BMI given by Wolpaw (Wolpaw et al, 2002) states that 'a BMI is a system for controlling a device (e.g., wheelchair, neuroprosthesis or computer) by human intentions without using activity of muscles or peripheral nerves'. Previous systems were mainly developed for patients suffering from several disabilities, especially for ALS and spinal cord injuries.

When the cognitive abilities are still intact a BMI might be the last opportunity for them to communicate with other people. A BMI could also help patients like amputees to lead a more comfortable life. Recently, many groups have suggested using a BMI system for healthy people as a further communication path for gaming or in real life. However, the functionality of a BMI is so far very limited as current BMI systems are not convenient for workplace applications. Nevertheless, recent results have given reasons to hope that the system can be improved to be useful for healthy users too (Washington University, 2006).

1.3 Brain Machine Interface Design

The BMI for a robot chair is designed in two phases, (1) an offline training phase which calibrates the system and (2) an online phase which uses the BMI to recognize mental states and translates them into commands for the robot chair. An online BMI follows a closed-loop process, usually comprising of six steps: brain activity measurement, pre-processing, feature extraction, classification, translation into a command and feedback (Mason & Birch, 2003). These are briefly explained as:

(a) **Brain activity measurement:** This step consists of using various types of sensors in order to obtain signals reflecting the user's brain activity. This thesis focuses on EEG motor imagery as the measurement technology.

(b) **Pre-processing:** This step is used to denoise the input data in order to enhance the relevant information embedded in the signals.

(c) **Feature Extraction:** Feature extraction aims at describing the signals by a few relevant values called 'features'.

(d) **Classification:** The classification step assigns a class to a set of features extracted from the signals. This class corresponds to the kind of mental state identified. This step can also be denoted as 'feature translation' (Mason & Birch, 2003).

(e) **Translation into a Command:** Once the mental state is identified, a command is associated to this mental state in order to control a given machine such as a robot, a wheelchair or a prosthetic device (Kubler, Mushahwar, Hochberg & Donoghue, 2006).

(f) **Feedback:** Finally, this step provides the user with a feedback about the identified mental state. This aims at helping the user controlling his brain activity and as such the BMI. The overall objective is to increase the user's performances.

The architecture of a BMI to control a robot chair is schematised in Figure 1.1; it should be noted that before operating such a BMI, considerable calibration work is necessary; this work is generally done offline and aims at calibrating the classification algorithm.

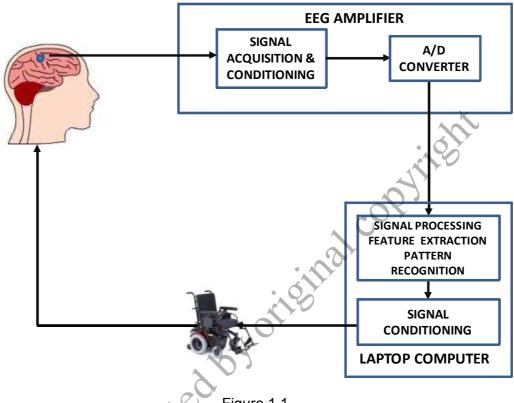


Figure 1.1 Architecture of a Brain Machine Interface for Robot Chair Control.

In order to do so, a training data set must have been recorded previously from the user. Since EEG signals are highly subject-specific, the BMI systems must be calibrated and adapted to each user. This training data set contains EEG signals recorded, when the subject performs each mental task of interest several times according to given instructions. The recorded EEG signals are then used as mental state samples in order to find the best calibration parameters for the user.

1.4 Thesis Objectives

The work presented in this thesis belongs to the framework of BMI research. More precisely, it focuses on the study of EEG signal processing and classification techniques in order to design and use BMI for controlling and navigating a robot chair. Despite the valuable and promising achievements already obtained in the literature to

interface the brain and computers (BCI), brain machine interfacing is still a relatively young research field and there is still much to do in order to make BMI become a mature technology. Among the numerous possible improvements, three main points are addressed in this thesis; that is, designing a four-class control BMI using hand Motor Imagery (MI); designing an asynchronous BMI to control a robot chair and real-time robot chair navigation studies in indoor environments using the four-class BMI. The BMI community has highlighted these points as being important and necessary research topics for the further development of BMI technology for real life situations (Wolpaw, Birbaumer, McFarland, Pfurtscheller & Vaughan, 2002; Millán, Renkens, Mourino & Gerstner, 2004; Leeb et al, 2007). The aspects of the three improvements are illustrated as below:

(i) Designing a four-class control BMI using hand MI

Most current BMI systems focus on left hand, right hand, feet, cheek and tongue movements to design a four-class BMI which require more electrodes to record these signals. Designing a four-class BMI using only hand movements with only two electrodes reduces the processing time and thus increases the transfer rate of the BMI for real-time control of a robot chair. A practical four-class BMI for a robot chair can be achieved through effective acquisition protocols and good classification accuracy.

a. **Designing protocols using only hand motor imagery for a four-class BMI:** The number of classes used is generally very small for BMI. Most current control BMI propose only 2 classes (two kinds of mental states) using hand MI. Designing algorithms that can efficiently recognize a larger number of mental states would enable the subject to use more commands and thus benefit from a higher information transfer rate (Kronegg, Chanel, Voloshynovskiy & Pun 2007; Dornhege, Blankertz, Curio & Muller, 2004). However, to really increase the information transfer rate, the classifier