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MESIN OTAK ANTARA MUKA MENGAWAL KERUSI ROBOT 

ABSTRAK 

 

 

 

Mesin Otak Antara Muka Mengawal Kerusi Robot: Mesin otak antara muka adalah 
sebuah alat hubungan otak manusia secara langsung untuk alat-alat seperti komputer, 
kerusi roda dan lengan palsu. Antara muka tersebut menyediakan satu saluran digit 
untuk komunikasi dan kawalan dalam ketiadaan saluran-saluran biologi dan oleh itu 
membantu dalam pemulihan mobiliti dan individu-individu hilang upaya bercakap.  
Dalam tesis ini, sebuah novel empat-kelas mesin otak antara muka direka bentuk 
untuk sebuah kerusi robot menggunakan jaringan saraf.  Mudah dan protokol-protokol 
novel untuk memperolehi isyarat otak EEG daripada dua elektrod kulit kepala tidak 
invasif  dibentangkan. Empat kerja berdasarkan imejan penggerak oleh pergerakan 
tangan kiri dan kanan adalah dicadangkan untuk mengawal arah bagi kerusi robot. 
Satu algoritma novel untuk pemerolehan isyarat-isyarat imejan penggerak 
menggunakan pergerakan tangan adalah dicadangkan. Prapemprosesan algoritma 
mudah diperkenalkan untuk membuang hinggar daripada isyarat-isyarat mentah. Jalur-
jalur frekuensi Mu, beta dan Gamma yang berkaitan dengan tindakan-tindakan 
penggerak  adalah disari menggunakan penapis yang ditempa. Ciri-ciri baru 
berdasarkan bahagian-bahagian masa dan frekuensi isyarat-isyarat EEG adalah 
dicadangkan dan diuji dengan pengelas. Pengelasan isyarat-isyarat imejan empat 
tangan penggerak dibentangkan menggunakan jaringan saraf statik dan dinamik. 
Algoritma berasaskan pengoptimum kumpulan zarah dicadangkan bagi melatih 
jaringan saraf. Gabungan cadangan ciri-ciri dan pengelas statik dan dinamik dianalisis. 
Isyarat-isyarat dihimpun dari 10 subjek terlatih untuk digunakan dalam menganalisis 
reka bentuk BMI  segerak dan tak segerak. Satu maxone algoritma untuk 
penterjemahan bagi isyarat-isyarat imejan penggerak tangan kepada pergerakan 
kerusi robot dibentangkan. Sebuah kerusi robot prototaip direka dan diantaramukan 
dengan tak segerak maju BMI.  Ciri-ciri keselamatan disepadukan melalui satu sistem 
pengelakan pelanggaran untuk meningkatkan prestasi bagi kerusi robot.  BMI 
mengawal  kayu ria bagi kerusi robot menggunakan satu algoritma kawalan kongsi. 
Eksperimen-eksperimen masa-nyata adalah juga dipersembahkan menggunakan 10 
terlatih dan 5 tak terlatik subjek untuk mensahihkan kebolehgunaan bagi mesin otak 
antara muka. Eksperimen-eksperimen dijalankan pada dua penjelasan (luar dari 
persekitaran makmal) dengan 25 subjek tak terlatih bagi menilai kemungkinannya 
dalam persekitaran kehidupan sebenar. 
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BRAIN MACHINE INTERFACE CONTROLLED ROBOT CHAIR 

ABSTRACT 

 

 

 

Brain Machine Interface Controlled Robot Chair: Brain Machine Interface is a 
device that links the human brain directly to devices such as computer, wheelchairs 
and prosthetic arms. Such interfaces provide a digital channel for communication and 
control in the absence of the biological channels and thus help in the rehabilitation of 
mobility and speech impaired individuals. In this thesis, a novel four-class brain 
machine interface (BMI) is designed for a robot chair using neural networks. Simple 
and novel protocols for acquiring brain EEG signals from two non-invasive scalp 
electrodes are presented.  Four tasks based on motor imagery of left and right hand 
movements are proposed to control the directions of the robot chair.  A novel algorithm 
for acquisition of motor imagery signals using only hand movements is proposed. 
Simple preprocessing algorithms are presented to remove noise from the raw signals. 
Mu, Beta and Gamma frequency bands related to the motor actions are extracted using 
customised filters. New features based on time and frequency components of the EEG 
signals are proposed and tested with classifiers. Classification of the four hand motor 
imagery signals is presented using static and dynamic neural networks.  A particle 
swarm optimization based algorithm is proposed to train the neural networks. 
Combinations of the features proposed and the static and dynamic classifiers are 
analysed.  Signals collected from 10 trained subjects are used in the analysis of 
synchronous and asynchronous BMI designs. A max-one algorithm for translation of 
the hand motor imagery signals into robot chair movements is presented.  A prototype 
robot chair is designed and interfaced with the developed asynchronous BMI. Safety 
features are integrated through a collision avoidance system to enhance the 
performance of the robot chair.  The BMI controls the joystick of the robot chair using a 
shared control algorithm. Real-time experiments are also presented using 10 trained 
and 5 untrained subjects to validate the applicability of the brain machine interface. 
Experiments were carried out at two expositions (out-of-lab environments) with 25 
untrained subjects to assess its feasibility in real life environments.   
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CHAPTER 1 

INTRODUCTION  

 

 

1.1 Introduction 

Controlling objects or machines by thought is a dream which is currently moving from 

science fiction to science and technology.  The prospect of humans interfacing the 

mechanical world through brain-coupled devices and thereby controlling everyday 

machines through the process of mere thought is certainly appealing. The technology 

that can make this to happen is known as a Brain Machine Interface (BMI). Hans 

Berger in 1929 through his experiments on human Electroencephalography (EEG) 

introduced the idea that brain activity could be decoded and used as a communication 

channel. EEG is a technique which makes it possible to measure, on the scalp, micro 

currents that reflect the brain activity. 

 

 A promising class of applications of BMI are those concerning assistive devices for 

people with serious motor impairments. The classical interfaces, that disabled people 

commonly use to control or manipulate an assistive device, typically require the patient 

to have adequate control over one or more physical components of his or her body. 

Typically that would be one of the limbs: an arm, hand or finger. Bioprosthetic systems 

that are directly controlled through brain signals on the other hand could provide for a 

more natural extension of human capabilities.  Especially in the case where the patient 

is completely paralysed, this technology may provide the only possible way for the 

patient to gain control over basic aspects of their daily life.  

 

Amongst these the ability to control the personal mobility is generally considered as an 

important one. The reduction in mobility that many people experience, due to various 

impairments or simply due to the effects of ageing, often has a profound impact on the 
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person’s independence, social activity and self esteem. For many people suffering from 

a diverse range of impairments, the primary device that could provide for that mobility 

is the electrical wheelchair. It is worth noting however, that in case of locked-in patients 

their highest priority is not mobility. Still, learning to drive complex devices such as a 

wheelchair will also lead to better communication and domotic tools.  BMIs are also 

becoming more popular in the gaming and virtual reality sector for normal users. This 

thesis focuses on the development of a BMI system to control a robot chair as an 

assistive device for the mobility impaired people. 

 

1.2 Goal of a BMI System 

BMI research goes back to the early 1970s. At that time Jacques Vidal designed a 

brain-computer interface by a computer-based system that produced detailed 

information on brain functions and built the first brain computer interfaces based on 

visual evoked potentials (Vidal, 1973).  During the last decade the definition and the 

goal of a BMI has been refined and specialized. Definition of a BMI given by Wolpaw 

(Wolpaw et al, 2002) states that  ‘a BMI is a system for controlling a device (e.g., 

wheelchair, neuroprosthesis or computer) by human intentions without using activity of 

muscles or peripheral nerves’.  Previous systems were mainly developed for patients 

suffering from several disabilities, especially for ALS and spinal cord injuries.  

 

When the cognitive abilities are still intact a BMI might be the last opportunity for them 

to communicate with other people. A BMI could also help patients like amputees to 

lead a more comfortable life. Recently, many groups have suggested using a BMI 

system for healthy people as a further communication path for gaming or in real life. 

However, the functionality of a BMI is so far very limited as current BMI systems are 

not convenient for workplace applications. Nevertheless, recent results have given 

reasons to hope that the system can be improved to be useful for healthy users too 

(Washington University, 2006).  
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1.3 Brain Machine Interface Design 

The BMI for a robot chair is designed in two phases, (1) an offline training phase which 

calibrates the system and (2) an online phase which uses the BMI to recognize mental 

states and translates them into commands for the robot chair. An online BMI follows a 

closed-loop process, usually comprising of six steps: brain activity measurement, pre-

processing, feature extraction, classification, translation into a command and feedback 

(Mason & Birch, 2003). These are briefly explained as: 

(a) Brain activity measurement: This step consists of using various types of sensors 

in order to obtain signals reflecting the user’s brain activity. This thesis focuses on EEG 

motor imagery as the measurement technology. 

(b) Pre-processing: This step is used to denoise the input data in order to enhance 

the relevant information embedded in the signals. 

(c) Feature Extraction: Feature extraction aims at describing the signals by a few 

relevant values called ‘features’. 

(d) Classification: The classification step assigns a class to a set of features extracted 

from the signals. This class corresponds to the kind of mental state identified. This step 

can also be denoted as ‘feature translation’ (Mason & Birch, 2003).  

(e) Translation into a Command: Once the mental state is identified, a command is 

associated to this mental state in order to control a given machine such as a robot, a 

wheelchair or a prosthetic device (Kubler, Mushahwar, Hochberg & Donoghue, 2006). 

(f) Feedback: Finally, this step provides the user with a feedback about the identified 

mental state. This aims at helping the user controlling his brain activity and as such the 

BMI. The overall objective is to increase the user’s performances.  

 

The architecture of a BMI to control a robot chair is schematised in Figure 1.1; it should 

be noted that before operating such a BMI, considerable calibration work is necessary; 

this work is generally done offline and aims at calibrating the classification algorithm. 
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Figure 1.1  
Architecture of a Brain Machine Interface for Robot Chair Control. 

 

 

In order to do so, a training data set must have been recorded previously from the user. 

Since EEG signals are highly subject-specific, the BMI systems must be calibrated and 

adapted to each user. This training data set contains EEG signals recorded, when the 

subject performs each mental task of interest several times according to given 

instructions. The recorded EEG signals are then used as mental state samples in order 

to find the best calibration parameters for the user. 

 

1.4 Thesis Objectives 

The work presented in this thesis belongs to the framework of BMI research. More 

precisely, it focuses on the study of EEG signal processing and classification 

techniques in order to design and use BMI for controlling and navigating a robot chair. 

Despite the valuable and promising achievements already obtained in the literature to 
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interface the brain and computers (BCI), brain machine interfacing is still a relatively 

young research field and there is still much to do in order to make BMI become a 

mature technology. Among the numerous possible improvements, three main points 

are addressed in this thesis; that is, designing a four-class control BMI using hand 

Motor Imagery (MI); designing an asynchronous BMI to control a robot chair and real-

time robot chair navigation studies in indoor environments using the four-class BMI. 

The BMI community has highlighted these points as being important and necessary 

research topics for the further development of BMI technology for real life situations 

(Wolpaw, Birbaumer, McFarland, Pfurtscheller & Vaughan, 2002; Millán, Renkens, 

Mourino & Gerstner, 2004; Leeb et al, 2007). The aspects of the three improvements 

are illustrated as below: 

 

(i) Designing a four-class control BMI using hand MI 

Most current BMI systems focus on left hand, right hand, feet, cheek and tongue 

movements to design a four-class BMI which require more electrodes to record these 

signals. Designing a four-class BMI using only hand movements with only two 

electrodes reduces the processing time and thus increases the transfer rate of the BMI 

for real–time control of a robot chair. A practical four-class BMI for a robot chair can be 

achieved through effective acquisition protocols and good classification accuracy. 

 

a. Designing protocols using only hand motor imagery for a four-class BMI: The 

number of classes used is generally very small for BMI. Most current control BMI 

propose only 2 classes (two kinds of mental states) using hand MI. Designing 

algorithms that can efficiently recognize a larger number of mental states would enable 

the subject to use more commands and thus benefit from a higher information transfer 

rate (Kronegg, Chanel, Voloshynovskiy & Pun 2007; Dornhege, Blankertz, Curio & 

Muller, 2004). However, to really increase the information transfer rate, the classifier 
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