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Abstract 
 

In this paper, the problem of steady laminar two-dimensional boundary layer flow 
and heat transfer of an incompressible viscous fluid with a presence of thermal radiation 
over an exponentially stretching sheet is investigated numerically. The governing boundary 
layer equations are reduced into ordinary differential equations by a similarity 
transformation. The transformed equations are solved numerically using an implicit finite-
difference scheme known as the Keller-box method. The numerical solutions for the wall 
skin friction coefficient, the heat transfer coefficient, and the velocity and temperature 
profiles are computed, analyzed and discussed. 
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1.  Introduction 
The study of flow over a stretching sheet has generated much interest in recent years in view of its 
numerous industrial applications such as the aerodynamic extrusion of plastic sheets, the boundary 
layer along a liquid film, condensation process of metallic plate in a cooling bath and glass, and also in 
polymer industries. Since the pioneering work of Sakiadis (1961) which studied the stretching flow 
problem, various aspects of the problem have been investigated by many authors such as Cortell 
(2006), Xu and Liao (2005), Hayat et al. (2006) and Hayat and Sajid (2007). Besides, Magyari and 
Keller (2000) also focused on heat and mass transfer on boundary layer flow due to an exponentially 
continuous stretching surface. On the other hand, Gupta and Gupta (1997) stressed that realistically, 
stretching surface is not necessarily continuous. Previously, by the fact that cooling rate affects the 
quality of products, Ali (1995) has investigated the thermal boundary layer flow by considering the 
nonlinear stretching surface. Extension to that, Elbashbeshy (2001) added new dimension to the study 
on exponentially continuous stretching surface. A few years later, Khan (2006) and Sanjayanand and 
Khan (2006) studied the viscous-elastic boundary layer flow and heat transfer due to an exponentially 
stretching sheet. 
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It is worth mentioning that the studies of thermal radiation and heat transfer are important in 
electrical power generation, astrophysical flows, solar power technology and other industrial areas. A 
lot of extensive literature that deals with flows in the presence of radiation effects is now available. 
Elbashbeshy and Dimian (2002) analyzed boundary layer flow in the presence of radiation effect and 
heat transfer over the wedge with viscous coefficient. Besides that, Cortell (2008) has solved a problem 
on the effect of radiation on Blasius flow by using fourth-order Runge-Kutta approach. Later, Sajid and 
Hayat (2008) considered the influence of thermal radiation on the boundary layer flow due to an 
exponentially stretching sheet by solving the problem analytically via homotopy analysis method 
(HAM). Recently, El-Aziz (2009) and Ishak (2009) also focused on the effects of thermal radiation in 
their studies. 

In this paper, we investigate numerically the effect of thermal radiation on the steady laminar 
two-dimensional boundary layer flow and heat transfer over an exponentially stretching sheet, which 
has been solved analytically by Sajid and Hayat (2008). By employing the similarity transformation, 
the boundary layer equations are solved numerically using an efficient implicit finite-difference 
scheme known as the Keller-box method (Cebeci & Bradshaw, 1977, 1988). 
 
 
2.  Mathematical Formulation 
Consider the two-dimensional flow of an incompressible viscous fluid bounded by a stretching sheet in 
which the x-axis is taken along the stretching sheet in the direction of the motion and y-axis is 
perpendicular to it. Under the usual boundary layer approximations, the flow and heat transfer in the 
presence of radiation effects are governed by the following equations (Sajid & Hayat, 2008): 
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where u and v are the velocities in the x- and y- directions, respectively, ρ is the fluid density, ν (=μ/ρ) 
is the kinematic viscosity, μ is the dynamic viscosity, T is the temperature, k is the thermal 
conductivity, cp is the specific heat and qr is the radiative heat flux. The boundary conditions are given 
by 
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where Uo is the reference velocity, To is the temperature at the plate and T∞ is the temperature far away 
from the plate while L is a constant. Employing Rosseland approximation of radiation for an optically 
thick layer one has (Sajid & Hayat, 2008) 
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where k* is the mean absorption coefficient and σ* is the Stefan- Boltzmann constant. T4 is expressed as 
a linear function of temperature, hence 

4 3 44 3T T T T∞ ∞= −  (6) 
Invoking Equations (3), (5) and (6) one can write 
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Introduce the following transformations: 
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Equation (1) is automatically satisfied and Equations (2) and (7) reduce to 
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with the boundary conditions (4) become 
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In the above equations, Pr=μcp/k, E=Uo
2/Tocp and K=4σ*T∞3/k*k are the Prandtl, Eckert and 

radiation numbers, respectively, and prime denotes differentiation with respect to η. 
 
 
3.  Results and Discussion 
Equations (9) and (10) subject to the boundary conditions (11) are solved numerically using the Keller-
box method as described by Cebeci and Bradshaw (1977, 1988). From the results, it is seen that 
variations in Prandtl number Pr, radiation number K and Eckert number E do not affect the value of the 
wall skin friction coefficient due to the decoupled equations. The unique value obtained is 1.28180. 
Tables 1, 2 and 3 present the values of the heat transfer coefficient ( )0′−θ  for various values of the Pr, 
K and E, respectively. It is shown that as Pr increases, the heat transfer coefficient increases. 
Contradictory to Pr, increasing of parameters K and E decreases the value of heat transfer coefficient. 
 
Table 1: Values of the heat transfer coefficient, ( )0′−θ  for various values of K and E with Pr =1, 2, 3 

 
E = 0 E = 0.2 E = 0.9 K 

Pr=1 Pr=2 Pr=3 Pr=1 Pr=2 Pr=3 Pr=1 Pr=2 Pr=3 
0 0.9548 1.4714 1.8691 0.8622 1.3055 1.6882 0.5385 0.7248 0.8301 

0.5 0.6765 1.0735 1.3807 0.6177 0.9654 1.2286 0.4101 0.5869 0.6964 
1 0.5315 0.8627 1.1214 0.4877 0.7818 1.0067 0.3343 0.4984 0.6055 

 
Table 2: Values of the heat transfer coefficient, ( )0′−θ  for various values of Pr and E with K = 0, 0.5, 1 

 
E = 0 E = 0.2 E = 0.9 Pr 

K=0 K=0.5 K=1 K=0 K=0.5 K=1 K=0 K=0.5 K=1 
1 0.9547 0.6765 0.5315 0.8622 0.6177 0.4877 0.5385 0.4101 0.3343 
2 1.4714 1.0735 0.8627 1.3055 0.9654 0.7818 0.7248 0.5870 0.4984 
3 1.8691 1.3807 1.1214 1.6882 1.2286 1.0067 0.8301 0.6964 0.6055 

 
Table 3: Values of the heat transfer coefficient, ( )0′−θ  for various values of Pr and K with E = 0, 0.2, 0.9 

 
K = 0 K = 0.5 K= 1 Pr 

E=0 E`=0.2 E=0.9 E=0 E=0.2 E=0.9 E=0 E=0.2 E=0.9 
1 0.9547 0.8622 0.5385 0.6765 0.6177 0.4101 0.5315 0.4877 0.3343 
2 1.4714 1.3055 0.7248 1.0735 0.9654 0.5869 0.8627 0.7818 0.4984 
3 1.8691 1.6882 0.8301 1.3807 1.2286 0.6964 1.1214 1.0067 0.6055 
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Figures 1 illustrates the effects of Prandtl number Pr = 1, Eckert number E = 0.2 and radiation 
number K = 1 on the velocity profile ( ) ( ),f fη η′  and temperature profile ( )θ η . It is shown that the 

velocity profile ( ) ( ) and f fη η′  are inversely proportional to each other. The velocity profile is 
unique for all values of Pr, E and K due to the decoupled Equations (9) and (10). Further, Figs. 2, 3 and 
4 show the effects of Pr, E and K on the temperature profiles ( )θ η , respectively. It is shown in Fig. 2 

that the increase in Pr causes the decrease in temperature profiles ( )θ η  and the thermal boundary layer 
thickness. Physically, if Pr increases, the thermal diffusivity decreases and these phenomena lead to the 
decreasing of energy ability that reduces the thermal boundary layer. On the other hand, it has been 
observed in Fig. 3 that the temperature profiles and the thermal boundary layer thickness increase 
slightly with an increase of the Eckert number E. From Fig. 4, it is seen that the trend of the profiles is 
similar to the effect of E that is as K increases, the temperature profiles and thermal boundary layer 
thickness also increase. 

For further observation, the effects of E and K with fixed Pr = 1 can be found in Fig. 5. It is 
shown that as E and K increase, the temperature profiles also increase and the effects of K are more 
pronounced than the effects of E. On the other hand, the effects of E and Pr, with fixed K = 1, are 
illustrated in Fig. 6. It is shown that their effects are the opposite, in which the increase in E and the 
decrease in Pr lead to the increase in the temperature profiles. Finally, the effects of K and Pr with 
fixed E = 0.5 are displayed in Fig. 7. It is shown again that although both K and E have the same 
effects on the temperature profiles, in contrast to the effects of Pr, the effects of K are more pronounced 
than the effects of E. 
 

Figure 1: Velocity profile ( ) ( ),f fη η′  and temperature profile ( )θ η  
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Figure 2: Effects of Pr on the temperature profiles ( )θ η  
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Figure 3: Effects of E on the temperature profiles ( )θ η  
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Figure 4: Effects of K on the temperature profiles ( )θ η  
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Figure 5: Effects of E and K on the temperature profiles ( )θ η  with Pr = 1 
 

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

Pr = 1

�K = 0
K = 0.5
K = 1

E = 0, 0.5, 0.9

 
 

Figure 6: Effects of E and Pr on the temperature profiles ( )θ η  with K = 1 
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Figure 7: Effects of K and Pr on the temperature profiles ( )θ η  with E = 0.5 

 

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

E = 0.5

K = 0, 0.5, 1

Pr = 1
Pr = 2
Pr = 3

 
Acknowledgement 
The authors would like to acknowledge the financial support received in the form of the Research 
University Grant (GUP) from the Universiti Kebangsaan Malaysia. 
 
 
References 
[1] Ali, M.E. 1995. On thermal boundary layer on a power law stretched surface with suction or 

injection. International Journal of Heat and Fluid Flow 16: 280-290. 
[2] Cebeci, T. & Bradshaw, P. 1977. Momentum transfer in boundary layers. New York: 

Hemisphere Publishing Corporation. 
[3] Cebeci, T. & Bradshaw, P. 1988. Physical and computational aspects of convective heat 

transfer. New York: Springer-Verlag. 
[4] Cortell, R. 2006. Effects of viscous dissipation and work done by deformation on the MHD 

flow and heat transfer of a viscoelastic fluid oever a stretching sheet. Physics Letters A 357: 
298-305. 

[5] Cortell, R. 2008. Radiation effects in the Blasius flow. Applied Mathematics and Computation 
198: 333-338. 

[6] El-Aziz, M.A. 2009. Radiation effect on the flow and heat transfer over an unsteady stretching 
sheet. International Communications in Heat and Mass Transfer 36: 521-524. 

[7] Elbashbeshy, E.M.A. 2001. Heat transfer over an exponentially stretching continuous surface 
with suction. Archive of Mechanics 53: 643- 651. 

[8] Elbashbeshy, E.M.A. & Dimian, M.F. 2002. Effect of radiation on the flow and heat transfer 
over a wedge with variable viscosity. Applied Mathematics and Computation 132: 445- 454. 

[9] Gupta, P.S. & Gupta, A.S. 1997. Heat and mass transfer on a stretching sheet with suction or 
blowing. Canadian Journal of Chemical Engineering 55: 744-746. 

[10] Hayat, T., Abbas, Z. & Sajid, M. 2006. Series solution for the upper-convected Maxwell fluid 
over a porous stretching plate. Physics Letters A 358: 396-403. 

[11] Hayat, T. & Sajid, M. 2007. Analytic solution for axisymmetric flow and heat transfer of a 
second grade fluid past a stretching sheet. International Journal of Heat and Mass Transfer 50: 
75-84. 

[12] Ishak, A. 2009. Radiation effects on the flow and heat transfer over a moving plate in a parallel 
stream. Chinese Physics Letters 26: 034701. 

[13] Khan, S.K. 2006. Boundary layer viscoelastic fluid flow over an exponentially stretching sheet, 
International Journal of Applied Mechanics and Engineering 11: 321-335. 



Numerical Solution of the Boundary Layer Flow Over an Exponentially  
Stretching Sheet with Thermal Radiation 717 
 

 

[14] Magyari, E. & Keller, B. 2000. Heat and mass transfer in the boundary layers on an 
exponentially stretching continuous surface. Journal of Physics D: Applied Physics 32: 577-
585. 

[15] Sajid, M. & Hayat, T. 2008. Influence of thermal radiation on the boundary layer flow due to an 
exponentially stretching sheet. International Communications in Heat and Mass Transfer 35: 
347-356. 

[16] Sakiadis, B.C. 1961. “Boundary-layer Behavior on Continuous Solid Surfaces: I Boundary 
Layer Equations for Two Dimensional and Axisymmetric Flow”, AIChE J 7, pp. 26-28. 

[17] Sanjayanand, E. & Khan, S.K. 2006. On heat and mass transfer in a viscoelastic boundary layer 
flow over an exponentially stretching sheet, International Journal of Thermal Sciences 45: 819- 
828. 

[18] Xu, H. & Liao, S.J. 2005. Series solutions of unsteady magnetohydrodynamics flows of non-
Newtonian fluids caused by an impulsively stretching plate. Journal of Non-Newtonian Fluid 
Mechanics 159: 46-55. 

 


