BIMODAL REHABILITATION FOR THE VOICE AND MOVEMENT IMPAIRED USING BRAIN SIGNALS

INVENTORS:

MS. HEMA C.R.
ASSOC. PROF. DR. PAULURAJ M.P.
PROF. SAKALI VRAOAB
ASSOC. PROF. DR. ABDUL HAMID ADOM
PROF. NAGARAJ
MR. LEONG CHE WEE
MR. EMER SULIYAN MUSLIM TAN
MR. AHMED ZULKANDI MUSA
MR. FARID AFDH

CONTACT DETAILS:

LECTURER,
SCHOOL OF MECHATRONIC ENGINEERING
UNIVERSITI MALAYSIA PERLIS
02600, PADU, PERLIS
MALAYSIA
email: herma@unimap.edu.my

PROBLEM STATEMENT:

Motor function impairment can be rehabilitated through the use of computer-aided motion systems. However, the user's ability to control the device depends on the recoverable motor function of the user. The user's ability to control the device is limited if the user has limited recoverable motor function.

In order to overcome this problem, researchers have developed rehabilitation systems that use brain signals as an interface. These systems are designed to help users control the rehabilitation systems using brain signals.

THEORETICAL APPROACH:

The theoretical approach involves the use of brain-computer interface (BCI) systems. These systems use brain signals to control the rehabilitation system. The brain signals are captured using electrodes placed on the user's head. The captured brain signals are then processed using machine learning algorithms to extract meaningful information.

EXPERIMENTAL SETUP:

The experimental setup involves the use of a rehabilitation system that uses brain signals as an interface. The system is designed to help users control the rehabilitation system using brain signals. The system is tested on users with limited recoverable motor function. The results show that the system is effective in helping users control the rehabilitation system using brain signals.

RESULTS:

The results show that the system is effective in helping users control the rehabilitation system using brain signals. The system is able to accurately interpret the brain signals and control the rehabilitation system accordingly.

CONCLUSION:

The system developed is effective in helping users with limited recoverable motor function to control rehabilitation systems using brain signals. This system has the potential to help individuals with motor function impairment to improve their motor function and quality of life.

REFERENCES:


NON-REVIEWED JOURNAL ARTICLES:


IDEA CONFERENCE PROCEEDINGS:


UNIVERSITI MALAYSIA PERLIS
ILMU • KEIKHLASAN • KECEMERLANGAN