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Kajian di dalam Teori Fungsi Geometri bagi Pembolehubah Kompleks 

 

 

 

 

ABSTRAK 

 

 

 

 

Tesis ini mengkaji beberapa jenis fungsi geometri analisis di dalam cakera unit terbuka 

seperti normal, meromorphic, valen, harmonik dan fungsi analitik pecahan. Lima 

masalah dibincangkan. Pertama, kelas fungsi analitik berperingkat pecahan dicadangkan 

dan digunakan untuk mentakrifkan pengoperasi pembezaan pecahan teritlak, yang mana 

ia sepadan dengan pengoperasi Srivastava–Owa. Dengan menggunakan konsep 

subordinasi dan superordinasi peringkat pertama, sempadan atas dan bawah bagi fungsi 

analitik pecahan yang mengandungi pengoperasi ini dibincangkan. Seterusnya, 

sempadan pekali untuk subkelas baru fungsi analitik multivalen ( valen) yang 

mengandungi pengoperasi linear tertentu turut dibincangkan. Lain-lain sifat geometri 

bagi kelas ini juga dikaji. Satu subkelas baru bagi fungsi meromorphic valen yang 

ditakrifkan melalui subordinasi dan konvolusi juga diwujudkan, dan beberapa sifat 

geometrinya turut dikaji. Bagi sesuatu fungsi normal, perluasan fungsi hipergeometri 

Gauss, iaitu perluasan pengoperasi kamiran yang mengandungi pengoperasi kamiran 

Noor diwujudkan dan dibincangkan. Beberapa subkelas fungsi analitik yang 

mengandungi perluasan pengoperasi kamiran ditakrifkan dan diwujudkan. Selain itu, 

beberapa keputusan sandwich diperolehi. Hasil subordinasi pembezaan peringkat ketiga 

untuk pengoperasi linear yang berkonvolusi pengoperasi kamiran pecahan dengan 

fungsi beta tak lengkap yang berkaitan dengan fungsi hipergeometri pecahan, juga 

dikaji. Konsep dual bagi superordinasi pembezaan peringkat ketiga juga 

dipertimbangkan untuk mendapatkan pembezaan peringkat ketiga jenis sandwich. 

Keputusan diperolehi dengan menentukan kelas-kelas yang sesuai bagi fungsi yang 

dibenarkan untuk fungsi-fungsi pembezaan peringkat ketiga. Fasa akhir tesis ini 

memperkenalkan dua subkelas , iaitu   dan . Sempadan pekali, titik 

ekstrem, konvolusi, kombinasi cembung dan tutupan di bawah satu pengoperasi 

kamiran dikaji. Perhubungan di antara fungsi univalen dan fungsi hipergeometri dikaji 

sepenuhnya. 
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A Study in The Theory of Geometric Functions of a Complex Variable 

 

 

 

 

ABSTRACT 

 

 

 

 

This thesis deals with various types of analytic geometric functions in the open unit 

disk, such as normalized, meromorphic, valent, harmonic, and fractional analytic 

functions. Five problems are discussed. First, the class of analytic functions of fractional 

power is suggested and used to define a generalized fractional differential operator, 

which corresponds to the Srivastava–Owa operator. The upper and lower bounds for 

fractional analytic functions containing this operator are discussed by employing the 

first-order subordination and superordination. Coefficient bounds for the new subclass 

of multivalent ( valent) analytic functions containing a certain linear operator are then 

presented. Other geometric properties of this class are studied. A new subclass of 

meromorphic valent functions defined by subordination and convolution is also 

established, and some of its geometric properties are studied. For a normalized function, 
the extended Gauss hypergeometric functions, which are generalized integral operators 

involving the Noor integral operator, are posed and examined. New subclasses of 

analytic functions containing the generalized integral operator are defined and 

established. In addition, some sandwich results are obtained. Third-order differential 

subordination outcomes for the linear operator convoluting the fractional integral 

operator with the incomplete beta function related to the Gauss hypergeometric 

function, are investigated. The dual concept of the third-order differential 

superordination is also considered to obtain third-order differential sandwich-type 

outcomes. Results are acquired by determining the appropriate classes of admissible 

functions for third-order differential functions. The final phase of this dissertation 

introduces two subclasses of , which are denoted by  and . Coefficient 

bounds, extreme points, convolution, convex combinations, and closure under an 

integral operator are investigated for harmonic univalent functions in the subclasses 

 and . Connections between harmonic univalent and hypergeometric 

functions are also fully investigated.        
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Overview 

 

 Complex analysis is one of the classical branches in mathematics dating back to 

the 18th century. In the 20th century, important researchers on complex analysis include 

Euler, Gauss, Riemann, Cauchy, Weierstrass, and many more. Traditionally known as 

the theory of functions of a complex variable, complex analysis investigates the 

functions of complex numbers. It offers benefits in various branches of mathematics, 

including number theory and applied mathematics; as well as in physics, in the fields of 

hydrodynamics and thermodynamics; and in engineering fields, such as electrical 

engineering, mechanical, and others. 

 In complex analysis, a geometric function is a function whose range describes 

certain geometries. Geometric function theory, which studies the geometric properties 

of complex analytic functions, is a remarkable area in complex analysis. The 

cornerstone of geometric function theory is the theory of univalent functions, which is 

principally concerned with the analytic and univalent functions in a certain complex 

domain. This theory was founded in the early 20th century, when Koebe published the 

first important paper in this area in 1907. Alexander and Bieberbach followed suit in 

1915 and 1916 respectively. In 1907, Koebe greatly contributed to the origin of 

univalent function theory by introducing the notion of univalent mapping or univalent 

functions in his monograph (Graham & Kohr, 2003).  
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 Riemann mapping theorem is one of the most significant results in geometric 

function theory. Prior to Koebe, in 1850, Riemann provided this important result in 

geometric function theory by proving that an analytic function always exists; this 

function maps a simply connected domain onto another simply connected domain in a 

complex plane. This original version of the Riemann mapping theorem led to the birth 

of geometric function theory. Koebe launched the study of univalent functions in 1907, 

and then, in view of the Riemann mapping theorem, began the study of the properties of 

analytic and univalent functions on the unit open disk, rather than a general simply 

connected domain (Baernstein, Drasin, Duren & Marden, 1986). This field comprised 

the theoretical study of coefficient bounds, growth theorem, distortion theorem, 

differential subordination, differential superordination, and so forth. Many scholars, 

most notably Miller and Mocanu (2000; 2003), have performed extensive work in this 

field. Lately, new related topics appeared and developed interesting results and 

applications. The major and most interesting topic is the theory of harmonic functions, 

which is a natural generalization of univalent functions (Clunie & Sheil-Small, 1984).  

 

 

1.2  Background of Study 

 

 The analytic function is one of the miracles of complex analysis. The fact that an 

analytic function in an open unit disk can be represented by a convergent power series 

with real or complex coefficients makes it a significant element in the study of 

geometric function theory. The class  of all analytic functions in the open unit disk 

, normalized by the conditions , and 

containing the form  was introduced. The subclass of functions 
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, which consists of all analytic, univalent, and normalized functions in , also 

becomes the center of the study of univalent function theory. This class of functions has 

drawn considerable attention from various researchers around the world. The crucial 

property of functions in  is that the image domain  will describe different nice 

geometric properties, such as convex and starlike.  

 Univalent function theory is categorized under the more comprehensive area of 

geometric function theory. One of the main problems in the theory of univalent 

functions is Bieberbach's conjecture, which was proposed by Bieberbach in 1916 

(Duren, 1983). This conjecture states the upper bounds for the coefficients of functions 

in the class . Bieberbach was the first to establish the bound for the second coefficient 

of functions in the class , that is,  for . He assumed that if , then 

the coefficients  of  will satisfy , for all  (Duren, 1983). For many 

years, this conjecture remained a challenge to mathematicians. Finally, in 1984, Louis 

De Branges (1984) proved Bieberbach's conjecture (now known as de Branges theorem) 

by using hypergeometric functions. 

 The long gap between the formulation of Bieberbach's conjecture in 1916 

(Duren, 1983) and its proof by De Branges (1984) motivated researchers to introduce 

certain classes defined by geometric conditions, such as the classes of convex functions 

and starlike functions. Since that time, the estimation of the coefficients , for all 

, has been investigated for such subclasses of class  to provide some of the basic 

properties of univalent functions.  

 The natural generalization of univalent function is a valent (or multivalent) 

function, which belongs to the class ,  and is defined in the unit disk. If  is 

the valent function with , then  is the univalent function. Aside from this, 

researchers have introduced subclasses of multivalent analytic functions, which are 
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multivalently convex and multivalently starlike. The study of other classes of analytic, 

univalent, or meromorphic functions also started to take shape, and has remained a 

subject of wide interest today. 

 One of the most important tools mainly used in the definition of various classes 

of functions is the concept of subordination between analytic functions as put forward 

by Lindel f in 1908 (Duren, 1983). Later, Littlewood (1925; 1944) and Rogosinski 

(1939; 1943) presented the term and established the basic results involving 

subordination. A substantial theory was developed over the years. In contrast, the study 

of operators plays a major role in mathematics, especially in geometric function theory. 

Libera (1965) introduced an integral operator and examined specific properties of 

starlike functions under the said operator. Sălăgean (1983) studied the class of analytic 

functions defined by a differential operator. These works opened new ways of studying 

the operators in geometric function theory. Hence, numerous studies have been 

conducted, all of which attempt to generalize and define different subclasses of analytic 

functions involving operators (Ruscheweyh, 1975; Sălăgean, 1983, Noor, 1999). 

Miller and Mocanu (2000) used the principle of subordination to study various 

subordination theorems involving certain operators for analytic functions. In addition, 

Bulboaca (2002a; 2002b) and Miller and Mocanu (2003) extended the study to 

differential superordination as the dual problem of differential subordination. Since 

then, hundreds of papers regarding this topic have appeared in literature, and the 

applications and extensions of the theory have been developed in numerous fields, such 

as differential equations, partial differential equations, meromorphic functions, 

harmonic functions, integral operators, Banach spaces, and several complex variable 

functions.  
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 Harmonic univalent mappings are closely related. These functions are widely 

known to have a plethora of applications in the seemingly diverse fields of engineering, 

physics, electronics, medicine, operations research, aerodynamics, and other branches of 

applied mathematical sciences. Despite offering a natural generalization to studies on 

analytic univalent functions, the harmonic function surprisingly needed a long period of 

time to capture the interest of function theorists. The turning point came with the 

seminal paper by Clunie and Sheil-Small (1984). In their studies, they introduced class

, which consists of normalized harmonic univalent functions defined on the open unit 

disk, and managed to find viable analogues of the classical coefficient bounds, growth 

and distortion theorems, and covering theorems for the general setting of harmonic 

functions. Since then, harmonic mappings have motivated function theorists to 

investigate other subclasses of harmonic univalent functions in addition to its geometric 

properties. 

 Utilizing hypergeometric functions in proofing Bieberbach’s conjecture by De 

Branges (1984) has given function theorists a renewed drive to study this special 

function from the perspective of geometric function theory. This theory has been 

developed with various applications and generalizations by notable complex analysts. 

The hypergeometric function and its generalizations are applied in introducing various 

subclasses of univalent functions and obtaining several properties. Thus, the 

connections between analytic univalent and hypergeometric functions have been well 

explored, whereas few investigations have been conducted on analogous connections 

between hypergeometric functions and harmonic functions. 
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1.3 Problem Statement 

 

 The study of upper and lower bounds of fractional differential operators and 

linear operators in geometric function theory is very limited. Therefore, in this study, we 

focused on utilizing different methods to obtain these bounds. Thus far, two works have 

been published on the theory of third-order differential subordination and 

superordination, namely, Antonion and Miller (2011) and Tang, Srivastiva, Li and Ma L 

(2014). Third-order differential subordination and superordination are very important in 

the theory of geometric function. Therefore, we proposed a new study in this direction 

to develop the previous works. However, the connections between hypergeometric 

functions and harmonic functions is suggested by Ahuja and Silverman (2004). In the 

current study, we study the problem extensively and in depth.    

 

 

1.4 Objectives 

 

 This study aims to investigate the various results in geometric function theory. 

The objectives are as follows: 

i. To impose the upper and lower bounds for fractional analytic functions. 

ii. To examine the various properties of a certain subclass of valent functions. 

iii. To introduce new subclasses of analytic functions involving the Noor integral 

operator.  

iv. To apply third-order differential subordination and superordination on a new 

Carlson–Shaffer operator type.  
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v. To investigate the connection between harmonic functions and hypergeometric 

functions. 

 

 

1.5 Scope of Study 

 

 This work involves the study of a class of fractional analytic functions and 

certain subclasses of analytic, multivalent, multivalent meromorphic, and harmonic 

univalent functions by using the techniques of subordination and convolution. 

 

i. A new class  of the fractional analytic function in the open unit disk  is 

investigated as follows:  

  The fractional koebe function is modified by utilizing Taylor series 

expansion (Ibrahim, 2010) as follows: 

                                    (1.1) 

 

 A class of fractional analytic functions containing  of the form (1.1) is 

denoted by . This study aims to apply methods based on the first-order 

differential subordination and superordination of a class , which involves 

fractional derivative operators in the sense of Srivastava–Owa operators. Several 

differential subordination and superordination results are obtained, and a 

differential sandwich-type result is also studied. 
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ii. A new subclass  of class  of valent (multivalent) functions 

with negative coefficients is defined by utilizing a certain linear operator 

 as follows: 

  A function  is said to be in the subclass  if it satisfies 

the following inequality: 

              ,   (1.2) 

 

 where linear operator  (Mahzoon & Latha, 2009a) is given by 

                           .          (1.3) 

 In this study, coefficient bounds, growth and distortion theorem, radius of 

convexity and close-to-convexity, closure theorem, neighborhood property, 

partial sums, and integral means inequalities are obtained. 

 

iii. A certain subclass  of the class  of meromorphically 

valent (multivalent) functions with negative coefficients is defined by utilizing 

convolution and subordination concepts and is introduced as follows.  

  A function  is said to be in the class  if it satisfies 

the following subordination condition: 

         ,      (1.4) 

 

 for the function  
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