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Kajian Terhadap Teknik Pengekstrakkan Tak Linear bagi Pengenalan Emosi 

Wajah 

ABSTRAK 

Sejak beberapa dekad yang lalu, pengenalan emosi wajah telah menerima minat yang 
ketara di kalangan penyelidik dalam bidang penglihatan komputer, pengenalan corak 
dan bidang yang berkaitan. Peningkatan aplikasi terhadap pengenalan emosi muka telah 
menunjukkan kesan yang besar dalam beberapa bidang termasuklah daripada psikologi 
kepada interaksi manusia-komputer (HCI). Walaupun pengenalan emosi wajah telah 
mencapai tahap kejayaan tertentu, namun prestasinya masih jauh dari persepsi manusia. 
Banyak pendekatan telah dicadangkan dalam kesusasteraan. Malah, keupayaan 
pengenal emosi muka untuk beroperasi secara automatik sepenuhnya dengan ketepatan 
yang tinggi masih mencabar disebabkan masalah-masalah seperti perbezaan antara 
kelas, persamaan antara kelas dan perubahan halus ciri-ciri wajah. Masalah ini turut 
dikhuatiri apabila physiognomies muka berkaitan dengan umur, etnik dan jantina 
berbeza dari individu yang lain, seterusnya meningkatkan kesukaran mengiktiraf emosi 
muka. Untuk menyelesaikan masalah ini, tesis ini bertujuan untuk membangunkan 
teknik pengekstrakan tak linear dengan menggunakan Perintah spektral Tinggi (HOS) 
dan Empirikal Mod Penguraian (EMD) secara berasingan dalam mengenal tujuh emosi 
muka (marah, jijik, takut, gembira, neutral, sedih  dan terkejut) berdasarkan imej- imej 
statik. Langkah awal pra-pemprosesan adalah untuk mengasingkan kawasan muka 
daripada imej wajah asal dengan menggunakan pengecaman muka. Imej wajah 2-D 
kemudian diunjurkan ke dalam 1-D isyarat muka dengan unjuran berturut-turut melalui 
pengubah Radon. Pengubah Radon adalah translasi dan putaran tak berubah, oleh itu ia 
mengekalkan variasi dalam keamatan piksel. Isyarat muka yang menggambarkan emosi 
diekstrak menggunakan HOS dan EMD untuk mendapatkan satu set ciri-ciri yang 
ketara. Dalam rangka kerja HOS, statistik tertib ketiga atau bispectrum yang menangkap 
kontur (bentuk) dan maklumat tekstur telah digunakan pada isyarat muka. Dalam kajian 
ini, satu set ciri-ciri bispectral digunakan untuk menghuraikan ciri-ciri ketujuh-tujuh 
kelas emosi. Sementara itu, dalam rangka kerja EMD, isyarat muka telah diurai 
menggunakan EMD untuk menghasilkan satu set kecil fungsi mod intrinsik (IMFs) 
melalui proses saringan. Ciri-ciri IMF yang mempamerkan corak yang unik telah 
digunakan untuk membezakan emosi-emosi wajah. Dalam usaha untuk mengurangkan 
dimensi tinggi ciri-ciri HOS dan EMD, tiga teknik pengurangan dimensi telah 
digunakan: Analisis Pembezaan Linear (LDA), Analisis Pembezaan Fisher Tempatan 
(LFDA) dan Kernel LFDA (KLFDA). Ciri-ciri yang diperolehi kemudian dimasukkan 
kepada pengelas mesin pembelajaran yang berbeza seperti k-jiran terdekat (k-NN), 
Mesin Sokongan Vektor (SVM) dan Extreme Mesin Pembelajaran (ELM) untuk 
mengklasifikasikan tujuh emosi wajah. Untuk menilai keberkesanan kaedah yang 
dicadangkan, dua pangkalan data penanda aras telah digunakan iaitu Ekspresi Muka 
Perempuan Jepun (Jaffe) dan Ekspresi Muka Cohn-Kanade. Keputusan eksperimen 
menunjukkan bahawa kaedah yang dicadangkan bukan sahaja menunjukkan keputusan 
yang lebih hebat berbanding dengan beberapa algoritma yang sedia ada tetapi juga dapat 
menangani imej separa tertutup serta imej bising.  
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INVESTIGATION OF NONLINEAR FEATURE EXTRACTION TECHNIQUES 
FOR FACIAL EMOTION RECOGNITION 

ABSTRACT 

 
Over the last decades, facial emotion recognition has received a significant interest 
among researchers in areas of computer vision, pattern recognition and its related field. 
The increasing applications of facial emotion recognition have shown a sizeable impact 
in many areas ranging from psychology to human-computer interaction (HCI). 
Although facial emotion recognition has achieved a certain level of success, however its 
performance is far from human perception. Many approaches have been constantly 
proposed in the literature. In fact, the ability of facial emotion recognition to operate in 
fully automated with high accuracy remains challenging due to various problems such 
as intra-class variations, inter-class similarities and subtle changes of facial features. 
The adhered problem is further hampered as physiognomies of faces with respect to age, 
ethnicity and gender, thus increase the difficulties of recognizing the facial emotion. In 
order to resolve this problem, this thesis aims to develop nonlinear features extraction 
techniques of using Higher Order Spectra (HOS) and Empirical Mode Decomposition 
(EMD) separately in recognizing the seven facial emotions (anger, disgust, fear, 
happiness, neutral, sadness and surprise) from static images. A pre-processing step of 
isolating face region from different background was first employed by means of face 
detection. The 2-D facial image was then projected into 1-D facial signal by successive 
projection via Radon transform. Radon transform is translation and rotation invariant, 
hence preserves the variations in pixel intensities. The facial signal that describes the 
expression was extracted using HOS and EMD to obtain a set of significant features. In 
HOS framework, the third order statistic or bispectrum that captures contour (shape) 
and texture information was applied on facial signal. In this work, a new set of 
bispectral features was used to characterize the distinctive features of seven classes of 
emotion. While, in EMD framework, the facial signal was decomposed using EMD to 
produce a small set of intrinsic mode functions (IMFs) via sifting process. The IMF 
features which exhibit the unique pattern were used to differentiate the facial emotions. 
In order to reduce high dimensionality of HOS- and EMD features, three dimensionality 
reduction techniques were adopted: Linear Discriminant Analysis (LDA), Local Fisher 
Discriminant Analysis (LFDA) and Kernel LFDA (KLFDA). The obtained features 
were then fed to different machine learning classifiers such as k-nearest neighbor (k-
NN), Support Vector Machines (SVM) and Extreme Learning Machines (ELM-RBF) 
for classifying the seven facial emotions. To evaluate the effectiveness of the proposed 
method, two benchmark databases are used namely, Japanese Female Facial Expression 
(JAFFE) and Cohn-Kanade Facial Expression Database (CK). Experimental results 
show that the recognition rate of HOS + KLFDA + ELM-RBF and IMF1 + KLFDA + 
ELM-RBF have achieved the accuracy of 99.26% and 99.75%, respectively. Therefore, 
the proposed method not only demonstrates the superior results compared with some 
existing algorithms but also satisfactorily deal with partially occluded images as well as 
noisy images.  
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CHAPTER 1  

INTRODUCTION 

 

1.1  Research Background 

Facial emotion or synonymously facial expression refers to the explicit 

transformation of human face due to the automatic response of the emotional states. 

Facial expressions in fact are induced by the activations of facial muscles, which result 

in temporally deformed permanent facial features (eyebrows, eyelids, mouth and nostril) 

and transient facial features (furrow and bulges). Temporal dynamics of muscular 

activities are typically brief, ranging from 5 seconds or less 250 milliseconds (Fasel & 

Luettin, 2003). A study conducted by psychologist (Mehrabian, 1968) on 

communications pertaining to feelings and attitudes shows that 7% of meaning resides 

in the spoken word, 38% in vocal utterance (the way that the word are said) and the 

other 55% in facial expression. This implies that facial expression forms a major part of 

human communication. Hence, facial expression plays an important role in human face-

to-face interactions in delivering messages or intentions. 

Cross-cultural research in facial expression (Ekman, 1972, 1992; Ekman & 

Oster, 1979; Keltner & Ekman, 2000) has shown that the six facial expression of 

emotions such as anger, disgust, fear, happiness, sadness and surprise are universal 

across human ethnicities and cultures. Ekman & Friesen (1978) have introduced Facial 

Action Coding System (FACS) as a tool for measuring and describing facial muscular 

activity.  
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The FACS refers to the description of an individual or combine facial muscles 

and tongue generated from analysis of facial anatomy. They measure the facial 

appearance changes in terms of FACS with 44 different action units (muscle actions) 

that produce them. Therefore, FACS provides a tool for behavioral science research, 

cognitive process and also becomes a strong basis for the development towards human-

computer interaction systems.  

  Recent advances in image analysis, pattern recognition and computer vision 

open up a window towards automatic detection and classification of facial emotion. The 

automatic facial emotion analysis could bring facial emotion into human-machine 

interactions as a new modality and makes the interaction tighter and more efficient. 

Therefore,  analysis of facial expression would be highly beneficial for fields as diverse 

as in behavioral sciences,  medicines, physiology, security and computer science (Pantic 

& Rothkrantz, 2000a).  

  Nowadays, with advanced technology, facial emotion recognition (FER) is 

directed into the development of robust human-computer interface (HCI). This HCI has 

focused on the invention of social welfare robot that can assist the physically disabled 

who are bedridden or wheelchair bound to gain mobality. As the robot becomes part of 

our living space, it is important for a robot to understand human’s mood and emotion so 

that a better understanding and interaction between humans and machine can be 

achieved. For instance, the invention of nurse robot could tend to a patient in hospital 

via estimating his/her emotion and create an appropriate response to the particular 

emotions displayed.  

  Dai et al. (2001) proposed a new method for monitoring patients in bed by 

utilizing the analysis of FER. (Breazeal, 2003) developed an expressive humanoid robot 

called Kismet that is able to perceive natural social cues either from visual or auditory 
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channel and delivers the social signals to the man through facial expression. (Anderson 

& McOwan, 2004) developed EmotiChat application that capture the expression (e.g. 

happy ) and automatically insertion emotion icon “happy” into the text in the EmotiChat 

application without typing.  

  In behavioral sciences and medicine for instance, facial expression has been 

used for pain monitoring system in the work of (Hammal & Kunz, 2012). Their system 

utilizes facial expression to help patients who are unable to convey pain in words (e.g. 

newborn baby or persons with serious cognitive impairments like autism). Recently, 

facial expression was used to generate the differences between genuine and simulated 

pain. (Littlewort, Bartlett, & Lee, 2009) introduced a system that was able to 

differentiate between real and faking with better accuracy by tracking patterns of the 

subtle muscle movement from subject faces.  

  Due to the sizable impact of FER in daily life, various approaches have been 

proposed in the literature. Although FER has reached a certain level of success (Deng, 

Jin, Zhen, & Huang, 2005; Donato, Bartlett, Hager, Ekman, & Sejnowski, 1999a; Feng, 

Pietikäinen, & Hadid, 2005; Gu, Xiang, Venkatesh, Huang, & Lin, 2012; Owusu, Zhan, 

& Mao, 2014; Pantic & Rothkrantz, 2000b; Shan, Gong, & McOwan, 2009; Shih, 

Chuang, & Wang, 2008; Zhao & Zhang, 2011) development of a robust FER is still 

ongoing and challenging as there are still many unsolved aspects due to various 

unpredictable facial variations and complicated exterior environment conditions. The 

problems such as intra-class variations which exist in facial expression images of the 

same type, inter-class similarities in facial expression images and subtle change of 

nonlinear facial features make it difficult to pre-locate facial regions and perform robust 

and accurate feature extraction.  
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  The problem is further compounded by physiognomies of faces that vary from 

individual to another, thus making the recognition harder. Many efforts (Pantic & 

Rothkrantz, 2000a) have been made to deal with these variations in FER.  Ideally, facial 

features should be robust to intra-class variations such as small amounts of translation, 

rotation, spatial scale and additive noise. Higher order spectra (HOS) features and 

empirical mode decomposition (EMD) features are suitable from this perspective. 

Therefore, the main objective of this research is to propose nonlinear feature extraction 

techniques (using HOS and EMD) to improve robustness and performances in FER 

system.       

  HOS offer some advantages in identifying non-linear coupling, Gaussianity 

deviation and features obtained from it can be invariants to rotation, translation and 

scaling (Chandran & Elgar, 1993). These features can be used for various practical 

applications. Thus, it motivates this research to further investigate HOS techniques on 

facial emotion recognition.   

EMD is a multi-resolution technique suitable for nonlinear data. It decomposes 

complicated signals into frequency components so-called intrinsic mode functions 

(IMFs) (Huang et al., 1998). The EMD offers the benefits in which the basis functions 

can be directly derived from the signal itself based on the local characteristic time scale 

of the signal which provides full data-driven approach (Nunes et al., 2003) and often 

brings not only high decomposition efficiency but also sharp frequency and time 

localizations (Qing et al., 2010).  
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