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Sintesis dan Pencirian Bahan Katod dalam Fasa Segitiga  

LiCoPO4–LiNiPO4–LiMnPO4 untuk Bateri Lithium Ion 

ABSTRAK 

Peranti penyimpanan tenaga elektrokimia dengan ketumpatan tenaga yang tinggi adalah 

penting dalam masyarakat moden. Bahan katod yang mempunyai voltan nyahcas dan 

kapasiti nyahcas yang tinggi diperlukan untuk mendapatkan bateri litium yang 

mempunyai ketumpatan tenaga yang tinggi. Oleh itu, bahan katod voltan tinggi seperti 

olivine LiMPO4 (M = Mn, Co, and Ni) dan spinel Li2CoMn3O8 telah dikaji secara meluas 

oleh penyelidik-penyelidik. Dalam kajian ini, tiga siri analog dengan formula  

LiCo1-x[Ni0.5Mn0.5]xPO4, LiNi1-x[Co0.5Mn0.5]xPO4 dan LiMn1-x[Co0.5Ni0.5]xPO4 (0 ≤ x ≤ 1) 

yang berstruktur olivine dalam fasa segitiga LiCoPO4 – LiNiPO4 – LiMnPO4 telah dikaji 

secara sistematik sebagai calon berpotensi untuk bateri litium cas semula yang beroperasi 

pada voltan tinggi. Sampel-sampel telah disediakan melalui kaedah sintesis keadaan 

pepejal konvensional. Semua sampel telah dipanaskan pada suhu 750–1000 °C dalam 

udara selama 12 jam dengan dua pendekatan pendinginan yang berbeza, iaitu pendinginan 

perlahan dan pelindapkejutan. Pencirian komposisi-komposisi ini telah dilakukan dengan 

menggunakan Pembelauan sinar-X (XRD), Mikroskop Imbasan Elektron (SEM) dan 

Analisis Impedans Spektroskopi. Pada mulanya, LiCoPO4, LiNiPO4 dan LiMnPO4 telah 

disintesis dan telah digunakan sebagai rujukan piawaian. Analisis XRD menunjukkan 

bahawa semua sampel yang disintesis telah mencapai fasa tulen dan kestabilan struktur 

sehingga suhu 1000 °C. Semua sampel mempunyai struktur olivine dengan kumpulan 

ruang Pnma. Analisis struktur yang menggunakan kaedah penyaringan Rietveld 

menggunakan data XRD konvensional telah mendedahkan bahawa anggaran jumlah 

kecacatan kekisi (anti-site) adalah rendah iaitu kurang daripada ~ 5%. Perubahan 

parameter kekisi bagi sampel ketiga-tiga siri adalah selaras dengan hukum Vegard. 

Perbandingan struktur dan sifat elektrik antara sampel yang dilindapkejut dengan sampel 

yang didinginkan dengan perlahan telah dilakukan. Keputusan menunjukkan bahawa 

jumlah kecacatan kekisi (anti-site) dalam kedua-dua kaedah pendinginan mempunyai 

nilai yang lebih kurang sama. Walau bagaimanapun, semua sampel menunjukkan sifat 

keberaliran elektrik hakiki yang rendah iaitu sekitar 10-8 S cm-1 apabila diukur dengan 

LCR meter pada suhu 300 °C. Oleh itu, kajian lanjut telah dilakukan pada 

LiNi1/3Mn1/3Co1/3PO4 untuk meningkatkan kekonduksiannya. LiNi1/3Mn1/3Co1/3PO4 telah 

diproses dengan menggunakan kaedah pengisaran bebola untuk mengurangkan saiz 

zarah. Selepas itu, LiNi1/3Mn1/3Co1/3PO4 telah dicampur dengan pelbagai bahan 

bersumber karbon: graphene nano-platelets (GNP), nanotiub karbon (CNT) and hitam 

karbon (CB) untuk membentuk komposit. Keputusan menunjukkan bahawa komposit-

komposit LiNi1/3Mn1/3Co1/3PO4/C mempunyai kekonduksian yang lebih tinggi 

berbanding dengan LiNi1/3Mn1/3Co1/3PO4 yang tanpa pengubahsuaian. Oleh itu, 

pengubahsuaian melalui pemprosesan tersebut berkemungkinan boleh digunakan untuk 

meningkatkan kekondukisian ketiga-tiga siri analog tersebut. Selain itu, satu lagi 

penyelidikan sampingan turut dijalankan untuk mengkaji kesan penggantian Zn dalam 

Li2CoMn3O8, walau bagaimanapun, hasilnya tidak begitu memuaskan kerana sampel 

yang mengandungi Zn menunjukkan kapasiti nyahcas yang rendah.  
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Synthesis and Characterisation of Ternary System LiCoPO4–LiNiPO4 – LiMnPO4 

Cathode Materials for Li-ion Batteries 

ABSTRACT 

Electrochemical energy storage devices with high energy density are important in modern 

society. In order to obtain high energy density Li ion batteries, cathode materials with 

high discharge voltage and discharge capacity are required. Hence, high voltage cathode 

materials such as olivine LiMPO4 (M = Mn, Co, and Ni) and spinel Li2CoMn3O8 have 

been extensively studied by researchers. In this study, three analogous series with the 

formula of LiCo1-x[Ni0.5Mn0.5]xPO4, LiNi1-x[Co0.5Mn0.5]xPO4 and 

LiMn1-x[Co0.5Ni0.5]xPO4 (0 ≤ x ≤ 1) within the phase triangle of LiCoPO4 – LiNiPO4 – 

LiMnPO4 were systematically studied as potential candidates for high voltage 

rechargeable lithium ion batteries. The samples were synthesized by conventional solid 

state route at temperature 750–1000 °C in air for 12 hours with two different cooling 

conditions (i.e. slow cooling and quenching). These compositions were characterised by 

using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Impedance 

Spectroscopy Analyser. Initially, LiCoPO4, LiNiPO4 and LiMnPO4 were prepared as end 

members and were used as standard references. The prepared samples were single phase 

and structurally stable up to 1000 °C. All the XRD patterns could be indexed with the 

olivine structure and the space group of Pnma. Structural analysis using Rietveld 

refinement of conventional XRD data revealed that the estimated anti-site defects was 

comparably low which is less than ~5 %. The changes in lattice parameters across the 

series Mn, Co and Ni were in accordance with Vegard’s law. The structure and electrical 

properties of the slow-cooled and quenched samples were compared. The results showed 

that the anti-site defects in both the quench and slow-cooled samples have quite similar 

values. Nevertheless, all the samples exhibits low intrinsic electrical conductivities of 

about ~10-8 S cm-1 that were measured using a LCR meter at 300 °C.  Hence, further 

modification were performed on complex olivine LiNi1/3Mn1/3Co1/3PO4 in order to 

improve the conductivity. LiNi1/3Mn1/3Co1/3PO4 was ball milled to reduce the particle size 

followed by ball milling with three different carbon sources: graphene nano-platelets 

(GNP), carbon nanotube (CNT) and carbon black (CB) to form composites. The results 

showed that these composites have exhibited relatively higher coin cell conductivity 

compare to the bare sample. Hence, it was believed that this processing route can probably 

be applied to improve the conductivity of the three analogous series.  On the other hand, 

a small research was also carried out to study the effect of Zn doped into spinel 

Li2CoMn3O8, however, the result was not quite promising because the doped samples 

exhibited low discharge capacity.  

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



1 

CHAPTER 1 : INTRODUCTION 

 Background 

The research of lithium battery began in the 1950s, while research and 

development of the rechargeable Li-ion batteries (LIBs) began in the early 1980s at Asahi 

Chemicals (Brodd, 2009). LIBs have become a commercial reality in 1991 when the 

engineers from Sony managed to surprise the “battery world” by commercializing Li-ion 

battery (LIBs) which is based on a lithiated carbon anode and LiCoO2 as cathode. Since 

then, LIBs have been one of the most promising chemical-electrical energy conversion 

power sources owing to their outstanding properties which include higher energy density 

and operating voltage as compared to nickel metal hydride (Ni-MH) and lead acid 

batteries (Broussely, Biensan, & Simon, 1999). Diouf & Pode (2015) have disclosed the 

variety potential of the use of LIBs as primary energy storage substituting the very 

common lead acid batteries. 

Figure 1.1 shows that LIBs are most suitable for consumer electronic devices 

because they are lighter and smaller than other rechargeable batteries for the same energy 

storage capacity. Nowadays, it is believed that the driving force for the development of 

LIBs in renewable energy sector could be the electric vehicle and the smart grid industry. 

Hence, improving the energy density of batteries is utmost urgent. Huggins (2009) 

introduced the concept of energy quality which can be defined as the amount of useful 

power or product that a unit energy can provide. In response to this concept, high voltage 

energy is similar to high temperature heat whereby it is often more useful as demonstrated 

in Figure 1.2a owing to the square relationship between the electrical power (P) and the 
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practical voltage (V) (P = V2/R). Hence, an ideal LIB must fulfil the requirement of high 

capacity and high operating voltage. In other words, both electrodes need to have high 

specific capacity besides having high discharge voltage for cathode materials and low 

charge voltage for anode materials (Fig. 1.2b). However, in reality, cathode materials 

usually have to compromise between the discharge voltage and the specific capacity. For 

example, it can be observed from Figure 1.2c, LiNi0.5Mn1.5O4 can achieve specific 

capacity of about 120 mAh g-1 when the discharge voltage is high (~4.8 V) but 

LiNi0.8Mn0.1Co0.1O2 can exhibit specific capacity above 200 mAh g-1 with intermediate 

discharge voltage of about 3.6 V. Nonetheless, there are many more issues to be 

concerned before the commercialization of LIB using these electrodes. The development 

of energy storage is a continuing challenge for researchers to pursue higher performance 

and to sustain the environment for future generations as well.  

  

Figure 1.1: Comparison between different battery technologies in term of volumetric 

and gravimetric energy densitites (Tarascon & Armand, 2001). 
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Figure 1.2: Schematic of (a) heat quality (b) energy quality, showing analogous to the 

concept of heat quality, in which high voltage energy similar to high-temperature heat 

can be more useful.  (c) Comparison between several high energy quality of cathodes 

and anodes (Shi et al., 2018). 

1.1.1 Basic Operating Principle of Li-ion Batteries 

In the most basic sense, a standard Li-ion battery usually refers to a battery which 

consists of cathode (positive electrode) and anode (negative electrode) materials serve as 

a host for the Li ions (Li+). The anode and cathode are separated by an ionically 

conductive but electronically insulating electrolyte, separator and current collector 

(mostly Al and Cu) as depicted in Figure 1.3 (Rommel, Schall, Brünig, & Weihrich, 

2014). The common concept of present LIBs relies on transition metals oxides or 

phosphates (LiCoO2, LiMn2O4, LiCo1/3Mn1/3Ni1/3O2, LiFePO4, etc.) as cathode active 

material, while graphite is commonly used as anode active material. A separator in 
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