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Abstract- Simultaneous Localization and Mapping (SLAM) has 
been one of the active research areas in robotic community for 
the past decade of years.  SLAM addresses the problem of a 
robot navigating and building a map of an unknown 
environment, without an initial map or an absolute localization 
means.  This paper attempts to provide a comprehensive 
overview of the SLAM problem.  Successful SLAM 
implementations using laser, sonar and radar can be found in the 
literature.  However, recent extensions to the general SLAM 
problem has looked into the possibility of using 3-dimensional 
features and the use of vision sensors.  We will focus on these two 
approaches to the SLAM problem using vision: one with single or 
monocular camera and another with stereovision.  Current 
applications and future challenges will also be discussed. 
 

I.     INTRODUCTION 
 

   In the practical application of an autonomous robot, the first 
encountered problem is localization.  The ability to construct a 
map or floor plan while localizing in it is crucial in order to 
accomplish many tasks.  For example, a delivery robot needs 
to know its position and orientation relative to its starting 
point in the map to successfully navigate through an office 
area.  Although the localization problem could be easily 
solved by using a global positioning system such as a satellite-
based GPS (Global Positioning System), such global sensors 
are restricted to only a certain robot environment.  GPS 
technologies cannot function indoors or in an obstructed area.  
Furthermore, the existing GPS network provides accuracy to 
within several meters, which is also unacceptable for the 
purpose of localizing smaller-scale mobile robots.   

It has been understood early in the robotic community that 
the mapping and localization of the mobile robot are 
dependent.  In fact they are generally seen as two facets of the 
same fundamental problem and cannot be obtained 
independently of one another [1]. Having just the spatial 
position and orientation of the robot is not sufficient, a 
successful autonomous mobile robot must also interpret data 
from the on-board sensors, such as vision sensor, laser sensor, 
sonar, code disk, etc. to build up a geometrical and/or 
topological model of the environment.   The simplest approach 
to map building relies on the robot location estimates provided 
by dead-reckoning.  It is simple, inexpensive, and easy to 
implement in real time, but it is also well known that dead 
reckoning techniques generate position estimates with 
unbounded error growth. 

The term, Simultaneous Localization and Map Building 
(SLAM), Originally introduced by Cheeseman et. al. [2], 

  
Fig.  1.  The essential SLAM problem.  [3] 

 
II.    SLAM PROBLEM 

 

In the basic SLAM process, consider a mobile robot moving 
through an environment.  It executes a motion and estimates 
its new location using odometry.  It then takes relative 
observations and extracts geometric features from the raw 
sensor data.  The SLAM problem is to estimate the position of 
the robot together with the locations of all the features as 
shown in Fig.  1. 

 
At a time instant k, the following quantities are defined: 
 xk: The state vector describing the location and orientation 

of the mobile robot. 
 uk: The control vector, applied at time k-1 to drive the 

mobile robot to a state xk at time k. 
 mi: A vector describing the location of the ith landmark 

whose true location is assumed time invariant. 
 zik: An observation taken from the mobile robot at the 

location of the ith landmark at time k.  When there are 
multiple landmark observations at any one time or when 
the specific landmark is nor relevant to the discussion, the 
observation will be written simply as zk.   

 



Proceedings of the International Conference on Man-Machine Systems (ICoMMS) 
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA 

 

5A3-2 

In mathematical terms, the objective of SLAM is to estimate 
the state vector xk and the location of all the features, at 
discrete time instant k.  For this, the observation data from the 
sensors are constantly sampled and a map is built while the 
location of the robot is updated immediately as it is traveling 
through the environment.  In this formulation, the localization 
and mapping are performed simultaneously. 

In recent years, the SLAM problem has attracted wide 
attention by the mobile robotics community and many new 
algorithms and techniques have been developed.  Despite 
significant progress in this area, substantial issues remain in 
practically realizing a more general solution to the SLAM 
problem.  There are also cases where SLAM was employed in 
unmanned aerial vehicles [4, 5] and autonomous underwater 
vehicles [6].  However, despite of its success in practical 
applications, the problem of SLAM still presents some 
difficult issues, including the related problems of 
computational complexity, data association and environment 
representation. 
 

III.   SENSORS IN SLAM 
 

Sensors are the fundamental robot input for the process of 
map building. The characteristics of the sensors and the degree 
to which sensors can discriminate the world state are therefore 
critical. In order to create a map using sensors, such as 
ultrasonic range, it is necessary to consider the following 
important steps: sensor interpretations, integration over time, 
pose estimation, global grid building, and exploration [7]. 

For indoor robots in particular, the SLAM problem was 
initially addressed mostly using sonar. Durrant-Whyte et. al., 
[8] have implemented systems using a wide range of vehicles 
and sensor types and are currently working on ways to ease 
the computational burden of SLAM. Chong and Kleeman [9] 
achieved nice results using advanced tracking sonar and 
accurate odometry combined with a submapping strategy.  

Laser sensors provide more accurate 2D depth data in real-
time (extendable to 3D with additional servo drive), and many 
SLAM-related algorithms have been devised based on data 
obtained specifically from laser range finders. Ian and Stefan 
[10] present an approach to the generation of three 
dimensional maps that exploits improvements in vehicle 
location estimation by the SLAM algorithm using laser range 
finder. In a similar work, Brenneke et. al., [11] implemented 
the laser sensors in outdoor environments. The idea was to 
combine 3D perception with 2D localization and mapping to 
allow autonomous navigation in uneven and hilly 
environment, but without the computational costs of full 3D 
modeling. Castellanos et. al., [12] went on further by taking 
advantage of a multisensory system formed by two different 
sensors. A laser range finder and a CCD camera were fused to 
increase their robustness and assure reliability and precision of 
the observed features. The group also proposed a mapping 
strategy called the SPmap, a probabilistic framework for the 
SLAM problem [13]. Sensors such as laser and sonar rings for 
range measurement have been traditionally used to solve the 

SLAM problem. Recently, vision-based systems have also 
gained a great interest in the robotics community. 
Nevertheless the use of the auditory sensing in solving SLAM 
has not been much explored. Munguía et. al., in their work 
[14, 15], focus on the inclusion of the hearing sense in SLAM. 
Without a priori information of the sound source location, as 
the robot moves, the position of the sound source and the 
robot position in a global coordinate frame are both estimated. 

 

A.     Sensor Noise 
    Sensor noise induces a limitation on the consistency of 
sensor readings in the same environmental state. It is a 
difficult task for the robot to capture all the environmental 
features and project them on the map. These missing or 
overlooked data are often the source of sensor noise problem. 
It is because of the inaccuracy and incompleteness of these 
sensors that poses difficult challenges. 

Consider a sonar transducer which emits sound toward a 
relatively smooth and angled surface, much of the signal will 
coherently reflect away, failing to generate a return echo. A 
small amount of energy may return eventually depending on 
the material of the object. From the robot’s perspective, a 
virtually unchanged environmental state will result in two 
different possible sonar readings. 

In another example, a vision system used for indoor 
navigation in an office building may use the pixel intensity 
values of landmarks detected by its camera as features. 
However, the features selected are dependent on the 
illumination of the building’s interior. As a result, the camera 
appears noisy from the robot’s perspective as if subject to 
random error, and the features obtained from the camera will 
not be usable, unless the robot is able to execute a more robust 
feature detection algorithm. Such scenario is only one example 
of the apparent noise in a vision-based system. Picture jitter, 
signal gain, blooming, and blurring are all additional sources 
of noise, potentially reducing the useful content of a captured 
image. 

Sensor noise reduces the useful data content from the sensor 
readings. An alternative is to take multiple readings into 
account, employing temporal fusion or multi-sensor fusion to 
increase the overall information content of the robot’s inputs. 
 

IV.   VISION-BASED SLAM 
 

  Wide availability of low cost, low power and light-weight 
cameras as well as maturity of computer vision algorithms 
have made real-time vision processing much more practical in 
recent times, and consequently there has been an increasing 
interest in visually based navigation systems in the robotic 
research community. Cameras are interesting as they provide 
to obtain an accurate and detailed 3D representation of the 
environment, as well as perceptual information such as 
textures and colors, which can be matched by few other 
sensors. 
Performing SLAM based on visual perception has a number 

of advantages over traditional methods which deploy laser, 
sonar and other sensors: First, it provides data perceived in a 
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solid angle, allowing the development of 3D SLAM 
approaches in which the robot state is expressed by 6 
parameters (3D translation, roll, pitch, yaw). Second, visual 
motion estimation techniques can provide very precise robot 
motion estimates. Finally and more importantly, very stable 
features can be detected in the images, yielding the possibility 
to derive algorithms that allow matching them under 
significant viewpoint changes. Such algorithms provide robust 
data association for SLAM. 
Both monocular and stereo pairs have been used for mobile 

robot’s vision-based mapping and navigation. The goal is to 
autonomously explore an unknown environment and build a 
consistent map with an accuracy that is competitive with 
active range sensing solutions. 
 
A.     Bearings-only SLAM 
   The bearings-only SLAM problem is an instance of the more 
general partially observable SLAM, in which the sensor does 
not contain enough information to determine the location of a 
certain landmark. Using sonar sensors, for example, raises the 
problem of range-only SLAM. A solution to this problem has 
been proposed by Leonard et. al., [16] since a single 
observation is not enough to estimate a feature, multiple 
observations are combined from multiple poses. 

Several contributions propose different solutions for delayed 
initial state estimation in bearings-only SLAM [17]. Bailey, in 
his work [18], proposes an estimation which is computed 
using observations from two robot poses, and is determined to 
be Gaussian using the Kullback distance. The complexity of 
the sampling method proposed to evaluate this distance is 
quite high. A combination of a Bundle Adjustment for feature 
initialization and a Kalman filter are proposed by Deans et. al., 
[19]. The complexity of the initialization step is greater than a 
Kalman filter but theoretically gives more optimal results. 
Davison and Murray made the first application of active vision 
to real-time, sequential map-building within a SLAM 
framework [20]. A similar method based on a particle filter to 
represent the initial depth of a feature is proposed by Davison 
in [21]. However, its application in large scale environment is 
not straightforward as the required numbers of particles are 
linear with the initialization range. In another work, Davison 
et. al., [22] implemented localization and mapping with one 
wide-angle camera for any kind of robot. In [23], since the 
initial Probability Density Functions (PDF) of a feature is 
approximated by a sum of Gaussians, bad members are pruned 
until only a single Gaussian remains, that is then simply added 
to the Kalman stochastic map. A first un-delayed feature 
initialization method was proposed in [24]. The initial state is 
approximated with a sum of Gaussians and is explicitly added 
to the state of the Kalman filter. The sum of Gaussians is not 
described and the convergence of the filter when updating a 
multi-Gaussian feature is not proved. This algorithm has been 
recently extended in [25] using Gaussian Sum Filter. Also, a 
method based on a Kalman federate filtering technique is 
described in [26]. Bearings-only SLAM using vision is very 
similar to the well known Structure from Motion (SFM) 

problem. In [27], a framework for visual SLAM is presented 
based on a SFM approach from multiple views. 

A recent work by Pangercic et. al., [28] have demonstrated 
an unique measurement model that consists of the 
combination between the Region of Interest (ROI) feature 
detector [29] and the Zero-mean Normalized Sum-of-Squared 
Differences (ZNSSD) feature descriptor [30]. They both 
demand very little computational cost while still remaining 
invariant to translations, rotations and scale. By adapting 
monocular SLAM and particle filter to the planar mobile 
robot, the navigation performance is enhanced compared to 
the encoder only system [31]. 

Bearing-only SLAM is a partially observable SLAM 
problem, in which the sensor cannot directly retrieve depth 
information from the scene, but only the bearings of the 
features are observed. It requires a dedicated landmark 
initialization procedure, which integrates several observations 
over time. 
 
B.     SLAM with Stereovision 
  Stereopsis or Stereoscopic vision is the process of perceiving 
depth or distances to objects in the environment. As a strand 
of computer vision research, the stereo vision algorithms have 
advanced noticeably in the past few decades to a point where 
semi-commercial products are available as off the shelf 
devices. However a more augmented approach is needed to 
realize a sensor useful in SLAM. A schematic of the 
components along with interactions amongst each other is 
outlined in Fig. 2. 
Basic algorithms used in the approach include stereovision, 

interest points detection and matching, and visual motion 
estimation. Because localization is a key issue in SLAM, 
many systems rely on identifying features for matching 
between images. One well-known approach is SIFT (Scale-
Invariant Feature Transform) developed by Lowe [33]. An 
approach that uses SIFT is implemented by Se et. al., [34] 
with results obtained by a robot evolving in 2D in a 10 × 10m2 
laboratory environment, in which about 3500 landmarks are 
mapped in 3D. Another popular algorithm for registration data 
sets is the Iterative Closest Point (ICP). The ICP is based on 
searching of nearest point-to-point, point-to-tangent plane 
pairs and point-to-projection, and additionally estimating the 
rigid transformation which aligns them. The main of arduous 
computing part of ICP is an exhaustive search for 
correspondence and matching two image frames afterward 
[35]. Kyun Jung et. al., [36] presented a SLAM approach 
based on an Extended Kalman Filter (EKT), using only a set 
of non-registered stereovision image pairs.  
There are two popular frameworks in the SLAM community, 

the EKT and the Rao-Blackwellised Particle Filter (RBPF). 
The latter was chosen by Elinas et. al., [37] in constructing 
accurate dense metric maps of 3D point landmarks, and 2D 
occupancy grid maps from dense correlation-based stereo. Sim 
et al., [38] firstly presented stereo vision based SLAM using 
the FastSLAM algorithm, but his global SIFT feature 
matching influences the processing velocity seriously. Sim 
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and Little, [39] then addressed the problem of exploring and 
mapping an unknown environment using a robot equipped 
with a stereo vision sensor. RBPF is also implemented to solve 
the SLAM problem and uses efficient data structures for real-

time data association, mapping, and spatial reasoning. 
Similarly, Congdao et. al., [40] present an algorithm using a 
stereo camera based on RBPF in unknown outdoor 
environments. 

Fig. 2. The vision system for a SLAM implementation [32] 
 

 
V.   REPRESENTATIONS IN SLAM 

 

  The problem of representing the environment in which the 
robot moves is also a problem of representing the robot’s 
possible position or positions. Decisions made regarding the 
environmental representation might restrict the options 
available for robot position representation. Three fundamental 
relationships must be studied before choosing a particular map 
representation [41]: 
a) The precision of the map must appropriately match the 

precision with which the robot needs to achieve its goals. 
b) The precision of the map and the type of features 

represented must match the precision and data types 
returned by the robot’s sensors. 

c) The complexity of the map representation has direct 
impact on the computational complexity of reasoning 
about mapping, localization, and navigation. 

In SLAM, there are two common representations: the 
geometric mapping and the topological mapping. A geometric 
map represents objects according to their absolute geometric 
relationships by capturing only aspects of object geometry that 
are relevant to localization. This level of simplification 
reduces memory usage on mapping. However, these maps 
derived from a sensor must be matched against past sensed 
landmarks in global coordinates, which offers great difficulties 
due to the robot's position error. The simplest way to represent 
a geometric map is the occupancy grid-map. 
 
 
 
 
 

A.    Occupancy Grid Map 
  Occupancy grid maps are spatial representations of robot 
environments. The method of using this type of map divides 
whole areas as the regular small grids and the rate which each 
grid is occupied is represented in probability value. Each cell 
may also have a counter, whereby the value 0 indicates that 
the cell has not been “hit” by any ranging measurements and, 
therefore, it is likely to be a free space. As the number of 
ranging strikes increases, the cell’s value is incremented and, 
above a certain threshold, the cell is deemed to be an obstacle, 
as shown in Fig. 3. Once the map is acquired, they enable 
various key functions necessary for mobile robot navigation, 
such as localization, path planning, collision avoidance, and 
people finding [42]. 
The first of such map representations was the Certainty Grid 

developed by Moravec and Elfes [43]. In the Certainty Grid 
approach, the sensor readings are placed into the grid by using 
probability profiles that describe the algorithm's certainty 
about the existence of objects at individual grid cells. 
Borenstein and Koren [44] refined the method with the 
Histogram Grid, which derives a pseudo-probability 
distribution out of the motion of the robot. 
In order to build a consistent map of the environment, a 

reliable localization is required. The inherent error from using 
only odometry data will result in an unsatisfying map. Vu et. 
al. tackled this problem by implementing particle filter in the 
localization of the vehicle in the occupancy grid map [45]. 
They introduced a new fast implementation of incremental 
scan matching method that can work reliably in dynamic 
outdoor environments. 
Grid-based approaches offer discretized renditions of 

unstructured free spaces which can be used to localize a robot; 
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however the high resolution required for accurate 
representations demands large memory to store and high 
computation time to maintain. 

  
Fig. 3. Example of an occupancy grid map representation. [41] 

 

Furthermore, any fixed decomposition method such as this 
imposes an initial geometric grid on the map, regardless of the 
environmental details. This can be inappropriate in cases 
where geometry is not the most salient feature of the 
environment. 
 
B.    Topological Map 
  By contrast, the topological approach is based on recording 
the geometric relationships between observed features rather 
than their absolute position with respect to an arbitrary 
coordinate frame of reference [46,47]. The resulting 
presentation takes the form of a graph where the nodes 
represent the observed features and the edges represent the 
relationships between the features.. Unlike geometric maps, 
topological maps can be built and maintained without 
estimates for the position of the robot. This means that the 
errors in this representation will be independent of other errors 
in the estimates of the robot position [48]. 
Information Filters are commonly used to build this kind of 

maps [49]. Kuipers and Byun [50] developed a three level 
hierarchy of control, topology, and geometry with which they 
simulated an exploration and mapping strategy. The control 
level determined distinctive places, the topological level tied 
these distinctive places together, and the geometric level built 
metric maps around this framework. Brad et. al., [51] combine 
the strengths of a topological map with those of a feature-
based map. Topological techniques scale nicely to large spaces 
and higher dimensions, but cannot be used to position a robot 
at an arbitrary location. However, by using a topological map 
to decompose the space into regions, a feature-based map of 
moderate computational complexity could be built for 
arbitrary localization. 
A mobile robot must satisfy two constraints in order to 

navigate based on a topological map. First, it must have a 
means for detecting its current position in terms of the nodes 
of the topological graph. Second, it must have a means for 
traveling between nodes using robot motion. 
Recently, Gim et. al., [52] proposed algorithms integrating 

the grid and the topology map. The proposed scheme uses an 
occupancy grid map in representing the environment and then 

formulate topological information in a path finding algorithm. 
Simulations and experimental results from the work show that 
the performance of the proposed scheme to be faster and more 
stable. Choosing a map representation for a particular mobile 
robot requires the understanding of the sensors available on 
the mobile robot and its functional requirements. 
 

VI.   IMPLEMENTATIONS OF SLAM 
 

  Practical realization of probabilistic SLAM have become 
increasingly impressive in recent years, using the information 
obtained from the environment including the natural features, 
buildings, and even moving objects to address the SLAM 
problem. 
A new strategy called Hierarchical SLAM, introduced by 

Estrada et. al., [53], allows accurate metric maps of large 
environments to be obtained in real time. Leonard et. al, [54] 
are working primarily with underwater robots and sonar 
sensors and have recently proposed submapping ideas, 
breaking a large area into smaller regions for more efficient 
map-building [55]. The philosophy of Constant Time SLAM, 
also proposed by Leonard and Newman [56], is to maintain 
the consistency, to look for global convergence and to develop 
an algorithm computationally more efficient using local 
submaps. Davison and Murray made the first application of 
active vision to real-time sequential map-building within a 
SLAM framework [20]. They showed that active visual 
sensing is ideally suited to the exploitation of sparse 
"landmark" information required in robot map-building. Since 
the complexity and variety of indoor environments, the ability 
of simultaneous localization and mapping for autonomous 
mobile robots restricted their applications. A novel approach, 
which is based on clustering algorithm, fuzzy logic and neural 
networks, is proposed by Dai et. al., [57] in solving the SLAM 
problem. 
In order to improve the SLAM resolution, Zhang et. al. 

proposes a combination of the Gaussian Mixture Model 
(GMM) with Particle Filter (PF) and Unscented Kalman Filter 
(UKF) for the robot SLAM. From the simulation results 
shown in [58], the proposed methods work better than the 
FastSLAM and the UKF SLAM methods, especially in the 
case of dense landmark map. 
On the other hand, Dual FastSLAM algorithm has been 

implemented and successfully tested in simulated and real 
experiments by Rodriguez-Losada et al [59]. Their simulations 
have shown a similar performance to FastSLAM 2.0 in cases 
of accurate external sensors, and the real experiments have 
successfully built maps of indoor environments, with a feature 
model based on the SPMap approach that adequately manages 
partial observations of geometric features with symmetries as 
the segments that are used to model walls. 
Recently, the problem of Decentralized Simultaneous 

Localization and Mapping (DSLAM) has attracted new 
attentions. The main advantage of a decentralized data fusion 
system is the lack of dependency of the whole system on a 
central processing unit. Asadi and Bozorg [60] presented a 
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decentralized information fusion algorithm for a land vehicle 
moving in an unknown environment. The algorithm is 
implemented using the field data obtained from an experiment, 
and the capabilities of the algorithm in the estimation of the 
vehicle position and the landmark positions are demonstrated. 
A decentralized architecture with applications in the global 
optimization of pedestrians’ paths is presented in [61]. 
 

VII.   APPLICATIONS 
 

  The utilization of robots in everyday human-activities has 
recently become a significant trend of research in robotics. 
There are several, commercially available household robots 
(iRobot, Anybots) that can perform basic household chores: 
from cleaning the room to assistance in serving food. 
However, all these complex tasks, are usually pre-
programmed and cannot deal with the high degree of 
uncertainties usually associated with a human-populated 
environment. Therefore, intelligent technologies are required 
for autonomous execution of robots in the environments. 
The Forestrix project studies forest and tree trunk 

measurement technologies, signal processing methods and 
algorithms for semiautomatic control of forest harvesters. 
Machine vision systems and scanning laser range finders have 
established themselves as standard equipment in mobile 
robotics. In this project, [62] a machine vision system is used 
to augment the map generated by the SLAM algorithm to get 
information about the surrounding forest. With the help of the 
laser scanner, the machine vision system divides camera 
images into sub images. Each sub image contains one 
dominant tree trunk. Different edge detection algorithms are 
used to extract the vertical edges of the dominant tree trunk. 
Using a calibrated camera and range information from the 
laser scanner, it should be possible to measure the actual 
diameter of the tree trunk with greater accuracy that is 
attainable with a laser scanner alone. The machine vision 
system should also be able to identify the tree type i.e. whether 
it is pine, spruce, birch, or other deciduous tree. This 
additional information should be stored in the tree map that is 
incrementally built by the SLAM algorithm. 
Krys and Najjaran [63] describes a visual simultaneous 

localization and mapping (VSLAM) method for a pipe 
inspection robot that can serve as a carrier for nondestructive 
testing (NDT) sensors inside in-service water mains. Having a 
vision system onboard, the pipe inspection robot can perform 
localization and mapping and provide a 360º high-resolution 
global image of the internal surface of the pipe, using a 
sequence of images acquired by one or more digital cameras. 
In surgery, the increasing use of Minimally Invasive Surgery 

(MIS) is motivated by the benefit of improved therapeutic 
outcome combined with reduced patient trauma and 
hospitalization. The technique is increasingly being used to 
perform procedures that are otherwise prohibited by the 
confines of the operating environment. Mountney et. al. [64] 
have developed a robust technique for building a repeatable 
long term 3D map of the scene whilst recovering the camera 

movement based on SLAM to estimate the movement of the 
stereolaparoscope during MIS and build a map of the 
anatomical structure. The method has been validated with a 
simulated data set using real MIS textures, as well as in vivo 
MIS video sequences. The results indicate the strength of the 
proposed algorithm under the complex reflectance properties 
of the scene and the potential for real-time application for 
integrating with the existing MIS hardware. 
Perceiving or understanding the environment surrounding of 

a vehicle is a very important step in driving assistant systems 
or autonomous vehicles. The task involves both SLAM and 
detection and tracking of moving objects (DATMO). While 
SLAM provides the vehicle with a map of static parts of the 
environment as well as its location in the map, DATMO 
allows the vehicle being aware of dynamic entities around, 
tracking them and predicting their future behaviors. It is 
believed that if we are able to accomplish both SLAM and 
DATMO in real time, we can detect every critical situations to 
warn the driver in advance and this will certainly improve 
driving safety and can prevent traffic accidents [45]. 
In an urban search and rescue scenario, detecting the 

locations of survivors and then recovering them from a 
collapsed building is one of the biggest challenges faced by 
emergency response personnel. The environment can be 
unstable and difficult to negotiate while survivors trapped 
need to be rescued within a short time frame. SLAM technique 
used by robots and autonomous vehicles to assist human 
rescuers in such situations is one of the areas where robotics 
research can be of great benefit to humanity. Basically, the 
robots have to solve autonomously in real-time the problem of 
SLAM. Kleiner et. al. [65] proposes a novel method for real-
time exploration and SLAM based on RFID tags that are 
autonomously distributed in the environment, which allows 
the computationally efficient construction of a map within 
harsh environments encountered after a disaster, and 
coordinated exploration of a team of robots. 
 

VIII.   POSSIBLE DIRECTIONS OF FUTURE RESEARCH 
 

Currently, the assumption behind the map representations is 
that all objects on the map are effectively static. In general, 
these map representations should have explicit facilities for 
identifying and distinguishing between permanent obstacles 
(e.g., walls, doorways, etc.) and dynamic obstacles (e.g., 
humans, shipping packages, etc.). This is particularly true 
when one considers the home environment with which 
domestic robots will someday need to contend. However, 
neither the occupancy grid representation nor a topological 
approach is actively recognizing and representing moving 
objects as distinct from both sensor error and permanent map 
features. 
Another open challenge involves the interpretations of open 

spaces. Existing localization techniques generally depend on 
local measures such as range, thereby demanding 
environments that are somewhat densely filled with objects 
that the sensors can detect and measure. Wide-open spaces 
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such as parking lots, fields of grass, and indoor atriums such 
as those found in convention centers pose a difficulty for such 
systems because of their relative sparseness.  
Another possible direction for future research in this field 

would be sensor fusion. A variety of measurement types are 
possible using off-the-shelf robot sensors, including heat, 
range, acoustic and light-based reflectivity, color, texture, 
friction, and so on. Sensor fusion is a research topic closely 
related to map representation. Just as a map must embody an 
environment in sufficient detail for a robot to perform 
localization and reasoning, sensor fusion demands a 
representation of the world that is sufficiently general and 
expressive that a variety of sensor types can have their data 
correlated appropriately, strengthening the resulting percepts 
well beyond that of any individual sensor’s readings. 
 

IX.   CONCLUSION 
 

In this paper, we have provided a comprehensive introduction 
to the SLAM problem and its relevant research referenced 
extensively. The concept of autonomy of mobile robots 
encompasses many areas of knowledge, methods, and 
ultimately algorithms designed for trajectory control, obstacle 
avoidance, localization, map building, and so forth. 
Practically, the aims of the SLAM in a real-world environment 
is to obtain faster processing speed, more precise predictable 
results, and better system approximation and consistency. 
Clearly, the robot’s sensors and effectors play an important 
role in all forms of SLAM. It is because of the inaccuracy and 
incompleteness of these sensors and effectors that SLAM 
poses difficult challenges and remained an unsolved problem. 
At present, we have robust methods for mapping environments 
that are static, structured, and of limited size. Mapping 
unstructured, dynamic, or large scale environments remains 
largely an open research problem. 
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