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Pembangunan Shear Horizontal Surface Acoustic Wave Dengan Silicon Dioxide 

Nanopartikel Pandu Gelombang Pengesan Untuk Pengesanan Escherichia Coli 

O157: H7 

ABSTRAK 

 

Escherichia coli (E.coli) O157: H7, iaitu sejenis strain berbahaya di antara 225 serotipe 

yang unik bagi E.coli. Beberapa sel bakteria ini dapat menyebabkan anak-anak muda 

berada dalam keadaan yang serius. Terdapat lebih daripada 1 cfu E.coli O157: H7 dalam 

25 g makanan, telah dianggap sebagai tahap yang berbahaya. Tujuan penyelidikan ini 

adalah untuk membangunkan pengesan nanostruktur pandu gelombang (SHSAW) untuk 

mengesan E.coli O157: H7. Interdigital transducer (IDT) adalah peranti utama dalam 

pengesan SHSAW. Ia menentukan kekerapan salunan and kepekaan pengesan. Pada 

umumnya, lebih tinggi kekerapan salunan, pengesan lebih peka, dimana lebar IDT mesti 

dibuat untuk sub mikrometer. Ini akan melibatkan proses yang rumit dan kos tinggi. 

Walau bagaimanapun, beberapa laporan menyatakan bahawa rekabentuk IDT seperti 

bilangan elektrob penghantaran dan penerimaan, aperture akustik  dan panjang 

kelewatan talian boleh meningkatkan kepekaan pengesan SHSAW. Dengan itu, simulasi 

COMSOL Multiphysics telah digunakan dalam penyelidikan ini dan hasilnya didapati 

aperture akustik dan panjang kelewatan talian boleh meningkatkan kepekaan pengesan. 

Kajian ini diteruskan dengan pembangunan dan penilaian fabrikasi peranti SHSAW 

dengan menggunakan proses litografi konvensional yang ditambahbaik. Hasil kajian 

menunjukkan peranti dapat difabrikasi di dalam makmal dengan dimensi peranti yang 

tepat (kurang daripada 1%, (RSD)) dan tepat (ralat kurang daripada 4% daripada 

pengiraan teori) dan boleh disambung untuk eksperimen mengkaji kepekaan IDT 

terhadap beban mass. Dari RSM, IDT saiz nada 12 µm dengan saiz bukaan 0.72 mm 

dan panjang kelewatan talian 2.1mm  dengan purata frekuensi resonansi 385.1607 MHz 

dikenal pasti sebagai parameter yang paling optimum untuk mencapai kepekaan 

pengesan yang maksimum. Oleh itu, parameter IDT optimum terbukti lagi oleh 

eksperimen yang dapat mempengaruhi kepekaan beban mass.  Kepekaan peranti bersaiz 

nada 12 µm dipertingkatkan lagi dengan mendepositkan 130.5 nm lapisan nipis 

nanostruktur SiO2 dengan saiz zarah kurang daripada 70 nm. Nanostruktur ini bertindak 

sebagai pandu gelombang serta pengubahsuaian permukaan fizikal pengesan sebelum 

penetapan biomolekul. Satu urutan DNA tertentu daripada E. coli O157: H7 yang 

mempunyai 22 mers diguna sebagai ssDNA dengan hujungnya terdapat kumpulan 

amina yang ditetapkan pada kawasan lapisan nipis melalui tindakbalas kimia [(CHO-

(CH2)3-CHO) dan (APTES; NH2-(CH2)3-Si(OC2H5)3]. Penderia yang prestasi tinggi 

ditunjukan degan mengesan sasaran oligonucleotide tertentu dengan kepekaan 0,6439 

nM / 0.1 kHz dan had pengesanan serendah 1.8 femto-molar (1.8 x 10-15 M). 

Prestasinya terus dinilai oleh analisis kekhususan dengan menggunakan satu urutan 

oligonucleotide yang satu tidak sepadan dan komplementari.  
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Development of Shear Horizontal Surface Acoustic Wave with Silicon Dioxide 

Nanoparticles Waveguide Sensor for Escherichia Coli O157:H7 Detection 

 

ABSTRACT 

 

Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli 

unique serotypes. A few cells of this bacterium are able to cause young children to be 

most vulnerable to serious complications. The presence of higher than 1 cfu E .coli 

O157:H7 in 25 g of food has been considered as a dangerous level. Thus, highly 

sensitive sensor is needed for this. The aim of this research work is to develop 

nanostructure waveguide shear horizontal surface acoustic wave (SHSAW) sensor for 

the detection of E.coli O157:H7. The interdigital transducer (IDT) is the heart of 

SHSAW sensor. It deterrmines the resonant frequency and the sensitivity of the sensor. 

In generally, the higher the resonant frequency, the higher sensitive the sensor will be, 

the width of IDT has to fabricated to sub micrometer. These involve more expensive 

cost and complicated methods. However, few reports mentioned IDT design parameters 

such number of transmission and receiving electrode fingers, electrode length or 

acoustic aperture and length of delay line or propagation path, can increase the SHSAW 

sensor sensitivity. Herein, COMSOL Multiphysics simulations were implemented for 

this investigation, the delay line length and aperture sizes are found that can increase the 

mass loading sensitivity. The research was continued by the development and 

evaluation of fabrication SHSAW device by using the improved conventional 

lithography process was conducted. The results show that the dimension of devices 

were precisely(less than 1%, relative standard deviation (RSD)) and accurately (less 

than 4% error from theoretical calculation) fabricated in laboratory for experimentally 

study on the effects of IDT parameters toward mass loading sensitivity. From the 

response surface methodology, 12 µm pitch sizes IDT with 0.72 mm aperture size, 2.1 

mm delay line length and 385.1607 MHz average resonant frequency were identified as 

the most optimum parameters to achieve highest sensitive of devices.  Thus, these 

optimum IDT parameters were further proven by real experiments that able to affect the 

mass loading sensitivity. The 12 pitch size device was further enhanced by depositing 

130.5 nm thin layer of SiO2 nanostructures with particle size lesser than 70 nm. The 

nanostructures act both as a waveguide as well as a physical surface modification of the 

sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli 

O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the 

thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and 

(APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with 

the specific oligonucleotide target and attained the sensitivity of 0.6439 nM/ 0.1 kHz 

and detection limit was down to 1.8 femto-molar (1.8 x 10
-15

 M). Further evidence was 

provided by specificity analysis using single mismatched and complementary 

oligonucleotide sequences.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1    Introduction 

 

In 1885, the bacteriologist Theodor Escherich discovered the existence of 

Escherichia coli (E. coli) bacteria in the human colon (Feng et al., 2002). Today, many 

E. coli strains are known to exist in the digestive tract of humans and animals. Many of 

these are harmless and can act as normal microbiotas with mutual benefits for the 

bacteria and the host (Drasar & Hill, 1974). However, some strains that have undergone 

evolutionary changes which possess virulence factors to be pathogens (Lim, Yoon, & 

Hovde, 2010). These pathogenic E. coli can be divided into at least six categories based 

on their pathogenic mechanisms. The five most well known categories are the 

enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enteroinvasive E. 

coli (EIEC), enterotoxigenic E. coli (ETEC) and enterohemorrhagic E. coli (EHEC) 

(Nataro & Kaper, 1998).  The EHEC produce exotoxins known as verotoxins (also 

termed Shiga-like toxins) that cause several diseases, from mild diarrhea to potential 

fatal hemorrhagic colitis, hemolytic uremic syndrome, and thrombotic 

thrombocytopenic purpura (Goswami, Chen, Xiaoli, Eaton, & Dudley, 2015; Rahal, 

Kazzi, Nassar, & Matar, 2014; Wong et al., 2012).  

One of the most dangerous EHEC serotypes, E. coli O157:H7, was first 

recognized in 1982 as a human pathogen associated with outbreaks of bloody diarrhea 

in Oregon and Michigan, U.S.A. (Wells et al., 1983). Since then, E. coli O157:H7 
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outbreaks have been reported in at least 30 countries on six continents ((Dundas et al., 

2001; Michino et al., 1999; Doyle & Buchanan, 2012) with young children and the aged 

being most vulnerable to serious complications (Griffin & Tauxe, 1991). In Malaysia 

alone, there have been 62 cases of food poisoning by E. coli O157:H7 in 2008 and 36 

cases in 2009 (Soon, Singh, & Baines, 2011). The actual number of cases, however, is 

likely to be higher due to a lack of foodborne disease intensive monitoring and 

surveillance in Malaysia (Soon, et al., 2011). Estimated of 73,480 illnesses, 2,168 

hospitalizations, and 61 deaths due to the infections by E. coli O157:H7 annually in the 

United States has been reported by Centers for Disease Control and Prevention, Atlanta, 

Georgia, USA (Mead et al., 1999). In the U.S.A, the Center for Disease Control and 

Prevention in Atlanta, Georgia, estimates that there are 73 480 cases of E. coli O157:H7 

each year in the U.S.A, resulting in 2168 hospitalizations and 61 deaths (Mead et al., 

1999; C.-T. J. Lin, Jensen, & Yen, 2005), costing over US$400 million per annum 

(Frenzen, Drake, Angulo, & Group, 2005).  

 The E. coli O157:H7 bacteria can easily be transmitted through untreated water 

supply, undercooked or raw meat, milk, fruits, vegetables, food and shared use of 

facilities (Olsen et al., 2002; Rahal, et al., 2014; Varma et al., 2003; Wendel et al., 

2009). While conventional bacterial detection methods and microbiological techniques 

(pre-enrichment, selective enrichment, biochemical screening and serological 

confirmation) can be used to detect and identify outbreaks of this bacteria, this process 

is labour intensive and time consuming (18-24 hours or longer) (Hobson, Tothill, & 

Turner, 1996; Tietjen & Fung, 1995). In addition, there are more than 1000 E. coli 

serotypes and it is very difficult to distinguish E. coli O157:H7 from other close 

serotypes (Ørskov & Ørskov, 1992). Biosensors with higher sensitivity, and rapid and 

accurate detection of E. coli O157:H7 would greatly improve food security.  
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