

Comparative Study of Motor High Inrush Current Mitigation by Improvisation of Soft Starter Firing Angle using PSCAD

by

SITI IZYAN BT MD ZAINI (1532221570)

A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Electrical Power Engineering)

School of Electrical System Engineering UNIVERSITI MALAYSIA PERLIS

2017

	DECLARATION OF THESIS
Author's full name :	SITI IZYAN BT MD ZAINI
Date of birth :	7 JUNE 1985
Title :	COMPARATIVE STUDY OF MOTOR HIGH INRUSH CURRENT
	MITIGATION BY IMPROVISATION OF SOFT STARTER
	FIRING ANGLE USING PSCAD
Academic Session :	.2017-2018
	s becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed
at the library of UniMAP. This t	hesis is classified as :
	(Contains confidentia-information under the Official Secret Act 1972)*
	(Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
	to the UniMAP to reproduce this thesis in whole or in part for the purpose of ge only (except during a period of years, if so requested above).
en	
ANIS IL	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
850607075	DR. MUHAMMAD MOKHZAINI AZIZAN
(NEW IC NO. / PASSE	PORT NO.) NAME OF SUPERVISOR
Date :	Date :

UNIVERSITI MALAYSIA PERLIS

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGMENT

Alhamdulillah all praises to Allah for helping me to give me the spirit to complete my thesis. Completing this thesis was not an easy task. I was supported froma lot of people with high passion and they put a lot of confidence on me. Firstly, my countless thanks to my supervisor, Dr. Muhammad Mokhzaini bin Azizan who has never given up to supervise, guide, encourage and support me along this period. My greatest appreciation to both my parents who have given me idea and inspiration during this period. Not forgotten to my friend Mr.Mohd Shukor, who were together through this hardness of helping me along.

where toge

TABLE OF CONTENTS

THESIS DECLARATION	i
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	ix
LIST OF TABLES	xii
LIST OF ABBRETIATION	xiii
ABSTRAK	xiv
TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES LIST OF ABBRETIATION ABSTRAK ABSTRACT CHAPTER 1 INTRODUCTION	XV
1.1 Overview	1
1.2 Problem Statement	2
1.3 Objective of Research	3
1.4 Scope of Research	3
1.5 Thesis Outline	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	Introduction		6
2.2	Power	Power Quality Issue in Power System		7
2.3	Types	of Induction Motor		8
2.4	Equiv	alent Circuit of Induction Motor		9
2.5	 Inrush Current during Start-up of Induction Motor 2.5.1 Occurrence of Inrush Current 2.5.2 Characteristic of Inrush Current 		. dri	11
	2.5.1	Occurrence of Inrush Current	Alles	12
	2.5.2	Characteristic of Inrush Current		13
	2.5.3	Effect of Inrush Current to Motor System		14
2.6	Indust	ry Standard of Motor Inrush Current		15
	2.6.1	Voltage Rating		16
	2.6.2	Motor Current		17
	2.6.3	Standard NEMA Code Letters for Functioning of	Motor	19
		Locked Rotor Current		
2.7	Startin	ng Method of Induction Motor		21
	2.7.1	Full-Voltage Starting		22
	2.7.2	Reduced-Voltage Starting		22
	2.7.3	Conventional Starters		23
		2.7.3.1 Direct On-Line Starter (DOL)		24
		2.7.3.2 Star-Delta Starter	26	

		2.7.3.3 Auto-Transformer Starter	27
	2.7.4	Power Electronic Starter	29
		2.7.4.1 Soft Starter	29
		2.7.4.2 Frequency Inverter	30
		2.7.4.3 Three-Phase Inverter	30
2.8	Power	Semiconductor Devices	31
	2.8.1	Type of Power devices as Power Semiconductor Switch 31	
		2.8.1.1 Insulated Gate Bipolar Transistor (IGBTs)	32
		2.8.1.2 Gate Turn Off Thyristor (GTO)	32
		2.8.1.3 Silicon Control Rectifier (SCRs)	33
	2.8.2	Selection of Semiconductor Device as Switch	33
		2.8.2.1 Thyristor Principle	34
		2.8.2.1 (a) Reverse Blocking Mode	36
		2.8.2.1 (b) Forward Blocking Mode	37
	1 N	2.8.2.1 (c)Forward Conduction Mode	37
2.9	Select	ion of soft Starter Starting	38
	2.9.1	Configuration of Soft Starter Starting	39
	2.9.2	Operation concept of Main Circuit of Soft Starter Starting	41
	2.9.3	Firing Angle Working Concept	42
2.10	Summary 4		44

CHAPTER 3 METHODOLOGY

3.1	Introduction	46
3.2	Methodology of the Research	46
3.3	Technical Flowchart	48
3.4	Direct On-line Starter Produce Inrush Current	50
3.5	Soft Starter Firing Angle Circuit System	51
3.6	Firing Angle PSCAD Software for Simulation Tool	52
3.7	PSCAD Software for Simulation Tool	54
3.8	Simulation Direct-on-line (DOL) Starting Method	54
3.9	Simulation of Current Limitation Soft Starter	56
3.10	Firing Circuit for Current Limitation Soft Starter	58
3.11	Summary	62
CHA	PTER 4 RESULT AND DISCUSSIONS	
4.1	Introduction	63
4.2	Direct On-Line Motor Starting (DOL) for 3 Specifications	64
of Rat	ted Power	
4.3	Result Simulation for DOL of 3 different Rated Power	70
4.4	Setting Sawtooth Signal of Current Limitation Soft Starter	71
4.5	Simulation Adjusting of Firing Angle Rated Power Motor = 116kVA	73

4.6	Result simulation for Motor Rated Power 116kVA	78
Ζ	4.6.1 Calculation Triggering Signal Time	81
4.7	Simulation Adjusting of Firing Angle Rated Power Motor = 232kVA	82
4.8	Result simulation for Motor Rated Power 232kVA	88
	4.8.1Calculation Triggering Signal Time	91
4.9	Simulation Adjusting of Firing Angle Rated Power Motor = 435kVA	92
4.10	Result simulation for Motor Rated Power 435kVA	97
	4.10.1Calculation Triggering Signal Time	100
4.11	Comparison between Direct On-Line and Soft Starting Method	101
4.12	Summary	103
	tecte	
CHA	PTER 5 CONCLUSION & FUTURE WORKS	
5.1	Conclusion	107
5.2	Research Findings	109
((a) Resolving of Inrush Current during Starting an Induction Motor	109
	5.2 (b) Resolving the Application of Soft Starter to Mitigate	110
	Inrush Current	
	5.2 (c) Resolving of Control System through Firing Angle Adjustment	111
5	5.2 (d) Limitation of Research	111
5.3	Future Works	112

REFERENCES	114
5.4 (b) Soft Starter Control for Multiple Motor for Parallel Starting	113
5.3 (a) Soft Braking Function	112

orthis term is protected by original copyright

LIST OF FIGURES

NO.		PAGE
2.1	Wound motor connection	9
2.2	The parameters that used for induction motor circuit	9
2.3	Inrush Current waveform	11
2.4	Inrush Current during starting induction motor	12
2.5	Inrush Current characteristic	13
2.6	Relation Typical Current for General Purpose Design Motor B	18
2.7	Direct on-line starting	25
2.8	Star-Delta starting configuration	27
2.9	Auto-Transformer starting configuration	28
2.10	The configuration of basic Thyristor	35
2.11	Reverse Blocking Mode SCR	36
2.12	Forward Blocking Mode SCR	37
2.13	Soft Starter Starting Method and Configuration	39
2.14	Block Diagram Soft Starter Starting	40
2.15	Operating Voltage Waveform of one phase Thyristor	41
2.16	How Firing Angle working	43
2.17	Firing Angle working flow in term of current motor lagging	44
3.1	Flowchart of time project	47
3.2	Flowchart for simulation work	49
3.3	Equivalent circuit for Induction Motor	50
3.4	Soft Starter Firing Angle control operation	51
3.5	One Period of Sawtooth Signal	53

3.6	Direct On-line simulation	55
3.7	Soft Starter simulation circuit	56
3.8	Breaker simulation circuit	57
3.9	Soft Starter Firing Angle control circuit	59
3.10	Generated Sawtooth	59
3.11	Operation Generate Triggered Pulse for One Cycle	61
4.1	Highest Magnitude of Inrush Current of Rated Power Motor 116kVA	65
4.2	Highest Magnitude of Inrush Current of Rated Power Motor 232kVA	65
4.3	Highest Magnitude of Inrush Current of Rated Power Motor 435kVA	66
4.4	Time taken for DOL of rated power 116kVA to reach rated speed 67 (Steady State Current)	
4.5	Time taken for DOL of Rated Power 232kVA to reach rated speed (Steady State Current)	67
4.6	Time taken for DOL of Rated Power 435kVA to reach rated speed (Steady State Current)	67
4.7	Relation Inrush Current, Magnitude Voltage and Motor Torque in terms of delaying time taken to achieve rated speed at initial stage for Motor spec A which 116kVA	68
4.8	Relation Inrush Current, Magnitude Voltage and Motor Torque in terms of delaying time taken to achieve rated speed at initial stage for Motor spec B which 232kVA	69
4.9	Relation Inrush Current, Magnitude Voltage and Motor Torque in terms of delaying time taken to achieve rated speed at initial stage for Motor spec C which 435kVA	70
4.10	Reference sawtooth signal for output to trigger signal	72
4.11	Triggering Pulse for Thyristor	73
4.12	Simulation result after varying Firing Angle for Rated Power 116kVA	78
4.13	Before and after mitigation of Inrush Current, Magnitude Voltage 80 and Mechanical Speed to achieved steady state using Firing Angle 100° at Rated Power 116kVA	

4.14	Triggering Pulse for Thyristor Setting Firing Angle 100°	81
4.15	Simulation result after varying Firing Angle for Rated Power 232kVA	88
4.16	Before and after mitigation of Inrush Current, Magnitude Voltage and Mechanical Speed to achieved steady state using Firing Angle 95° at Rated Power 232kVA	90
4.17	Triggering Pulse for Thyristor Setting Firing Angle 95°	91
4.18	Simulation result after varying Firing Angle for Rated Power 435kVA	97
4.19	Before and after mitigation of Inrush Current, Magnitude Voltage and Mechanical Speed to achieved steady state using Firing Angle 92° at Rated Power 435kVA	99
4.20	Triggering Pulse for Thyristor Setting Firing Angle 92	100
4.21	Result comparison Inrush Current between DOL and Soft Starter using Firing Angle = 100° at Rated Power 116KVA	102
4.22	Result comparison Inrush Current between DOL and Soft Starter using Firing Angle = 95° at Rated Power 232kVA	102
4.23	Result comparison Inrush Current between DOL and Soft Starter using Firing Angle = 92° at Rated Power 435kVA	102
4.24	Graph comparison Inrush Current between DOL and Soft Starter at Rated Power 116kVA	104
4.25	Result comparison Inrush Current between DOL and Soft Starter at Rated Power 232kVA	104
4.26	Graph comparison Inrush Current between DOL and Soft Starter at Rated Power 435kVA	105
4.27	Graph of Current against Firing Angle of different Rated Power	105

LIST OF TABLES

NO.		PAGE
2.1	Motor Performance	15
2.2	Common NEMA Starter Sizes	17
2.3	General Purpose Design Motor of Full Load Current	18
2.4	Code Letter with Standard Lock Rotor	20
2.5	Locked Rotor Current for 60 Hz and Line Voltage 460 V	21
2.6	Different types of induction motor starter	23
3.1	Different Rated Power of 3 Motor Specifications	56
4.1	Circuit Parameters	64
4.2	Result for comparison of 3 types motor with different Rated Power 71	
4.3 116kV	Summarize result for adjusting Firing Angle for rated power A	79
4.4	Summarize Result for adjusting Firing Angle for rated power 232kVA	88
4.5	Summarize Result for adjusting Firing Angle for rated power 435kVA	97
4.6	Summarize Relation for Rated Power, Inrush Current and Time Motor Starting at Initial Stage	103

LIST OF ABBREVIATIONS

AC	Alternate Current
API	American Petroleum Institute
DC	Direct Current
GTO	Gate Turn Off Thyristor
IEC	Electro Technical Commission
IEEE	Institute of Electrical and Electronics Engineers
IGBT	Insulated Gate Bipolar Transistor
NEMA	National Electrical Manufacturers Association
PSCAD	Power System Computer Aided Drafting
SCR	Silicon Controlled Rectifier

orthis item is protected by

Kajian Perbezaan pada Pengurangan untuk Arus Permulaan Tinggi Motor dengan Penambahbaikan pada Sudut Isyarat Pemula Rendah (soft starter) Menggunakan PSCAD

ABSTRAK

Arus permulaan tinggi adalah boleh dikatakan sebagai arus yang yang disedut oleh motor induksi ketika permulaan. Arus ini akan meningkat dari 5 ke 7 kali ganda kadar arus normal. Selalunya ia terjadi ketika permulaan motor berfungsi dan boleh mengakibatkan kerosakan motor dalam jangka hayat yang panjang.Untuk mengatasi masalah ini, beberapa pemula telah diperkenalkan. Salah satu teknik adalah mengunakan Pemula Rendah iaitu pemula yang terbaik kerana mempunyai sambungan litar yang mudah, senang untuk dikawal dan mempunyai kos yang rendah. Pemula Rendah dikawal oleh sudut isyarat untuk mengurangkan kadar arus keluar sebelum ke motor. Pengawalan sudut isyarat ini menggunakan alat semikonduktor sebagai suiz yang menghalang arus mengalir dari sumber tenaga kepada motor. Suiz ini dinamakan sebagai *thyristor* yang mana dipasang dengan kedudukan berlawanan arah kerana arus yang digunakan adalah jenis ulang alik. Arus keluaran boleh dikawal dengan mengubah sudut isyarat. Perubahan ini akan dilaksanakan oleh litar pengawal sudut isyarat. Kesuluruhan penyelidikan dilaksanakan melalui perisian PSCAD.Simulasi dilakukan pada motor dengan mengalirkan terus sumber tenaga kepada motor dipanggil (DOL) dan hasil kajian menunjukkan arus tinggi berlaku di dalam litar.Selepas itu, DOL diubahsuai dengan meletakan Pemula Rendah litar. Sudut isyarat untuk menghadkan arus diubah kepada beberapa sudut dan apa yang boleh disimpulkan ialah arus permulaan tinggi dapat dikurangkan dengan meninggikan nilai sudut isyarat.Simulasi dilakukan pada DOL dan juga Pemula Rendah dengan menggunakan 3 jenis kuasa nominal daripada nilai kapasiti motor rendah hingga tinggi iaitu 116kVA, 232kVA dan 435kVA. Semakin tinggi motor menggunakan kuasa nominal, semakin tinggi juga arus permulaan tinggi dihasilkan. Akhir sekali daripada simulasi yang telah dilakukan, Pemula Rendah terbukti dapat mengurangkan arus permulaan tinggi jika dibandingkan dengan **DOL** pada 3 jenis kuasa nominal yang telah disimulasikan dengan mengubahsuai nilai sudut isyarat pada nilai yang terbaik. Hasilnya, kuasa nominal yang paling rendah, 116kVA adalah dapat menggurang arus permulaan tinggi yang terbaik pada sudut isyarat 100° dan dengan menggurangkan arus permulaan tinggi sebanyak 50.38%. Untuk kuasa nominal 232kVA, sudut isyarat yang diperlukan adalah 95° dengan menggurangkan arus permulaan tinggi sebanyak 49.15%. Untuk kuasa nominal paling tinggi iaitu 435kVA, sudut isyarat yang diperlukan adalah 92° dengan menggurangkan arus permulaan tinggi sebanyak 50.24%. Pada sudut isyarat yang dipilih juga, masa tork motor yang diambil pada permulaan telah dapat diperbaiki untuk sampai ke kelajuan nominal. Ini bermakna, masa motor pada permulaan dapat dipercepatkan dari 1.5s kepada 0.9s dengan kuasa nominal 116kVA. Dengan kuasa nominal 232kVA, masa motor pada permulaan dapat dipercepatkan dari 3.1s kepada 1.3s. Dan dengan kuasa nominal 232kVA, masa motor pada permulaan dapat dipercepatkan dari 5.9s kepada 3.1s.

Comparative Study of Motor High Inrush Current Mitigation by Improvisation Soft Starter Firing Angle using PSCAD

ABSTRACT

Inrush current can be determined as current drawn by an induction motor during start-up period. This starting current will shoot up about 5 to 7 times of rated current. Usually, it was occurred at the starting period of induction motor and effect the lifetime of motor. To overcome this, several techniques can be implemented to reduce the high starting current. One of the technique issuing the soft starter which is the most convincing because of its simplicity in configuration, easy to control and low cost. The configuration involves power semiconductor devicewhich is thyristor that acts as a switch to control the current flow from power source to the motor. The current output can be controlled by varying the firing angle. The changing of firing angle is managed by a firing angle control circuit. The whole research was conducted through PSCAD/EMTDC software. In simulation, the power source, AC voltage was connected directly to the induction motor called direct on-line (DOL) and the DOL circuit was simulated to analyse the inrush current. From the simulation of DOL, the soft starter was added to the original circuit. The firing angle for soft starter was changed to several angles and what can be concluded that the high current succeed to mitigate with the altering firing angles. Simulation DOL and soft starter method were carried out with 3 different rated power which were 116kVA, 232kVA and 435kVA. Higher rated power resulting higher inrush current. As for the overall result, the inrush current was mitigated for all 3 rated power by using soft starter with the best adjusted firing angle. From the best chosen firing angle, the highest reduction of inrush current was at low rated power motor, 116kVA which was required firing angle 100° and mitigated 50.38% of inrush current. For rated power 232kVA, required firing angle 95° and mitigated 49.15% of inrush current. Highest rated power, 435kVA required firing angle 92° and mitigated 50.24% of inrush current. In additional, the time for torque motor to achieve its rated speed was improved. This means that the delaying time during start-up motor was shorten from 1.5s to 0.9s for rated power 116kVA. Rated power 232kVA was shorten from 3.1s to 1.3s and for rated power435kVA was shorten from 5.9s to 3.1s.

CHAPTER 1

INTRODUCTION

1.1 Overview

During operation of equipment when power was first applied, there was high current drawn at initial stage called inrush current. In simpler words, it was current drawn by a piece of electrically operated equipment when power is first applied. This inrush current could be find with Alternating Current (AC) or Direct Current (DC) powered equipment and a can happen even with low supply voltages. For the starting current, it will shoot up about 5 to 7 times of its rated current when a motor is started. However, the occurrence of high current usually at beginning period of starting time equipment. One of the causes of the inrush current is caused by induction motor. When the current drawn is high, the torque exerted is also high. This starting current will severely disrupt the voltage in power supply until it rapidly drops, disturb all other running devices that use the same power network and can severely damage the loads. Also, inrush current will bring harm to motor such as overheating (Youxin et al., 2007). To overcome the problem, various motor starters were introduced. There are numerous types of motor which was named conventional starters and power electronic drives. Examples of conventional starters are autotransformer, direct on-line starter and stardelta. For power electronic drives starters the examples are matrix converter, frequency inverter and soft starter. These starters are more consistent and reliable. This is due to it is only consists some power semiconductor switches and controller. Recently, the usage of power electronic drives soft starter is broadly used in power system industry. The device is capable in providing low inrush and controlling the applied voltage to prevent breakdown and minimize the maintenance cost.

This research is focused on improvising in power electronic starters which is soft starter in order to provide low inrush current during start-up of three-phase induction motor.

1.2 Problem Statement

During power on period, there is a high inrush current from mains supply which can cause voltage drop or voltage dip that lead to failure to the load. As for result, the starting of an induction motor with high power rating willproduce high inrush current which may cause failure to the motor and also trip the power system. To overcome this, motor could be a starting system with several different methods such as direct on line method, star-delta method, autotransformer method (Goh et al., 2009) according to motor and load specifications. These starters are normally only used in starting period and will not function after motor reach at the rated speed. But somehow, the existing methods still generate high current to the motor when these starters are being bypassed after the start-up period. All these existing methods also have limitation and disadvantages such as, low efficiency, difficult to operate and high installation cost.

To overcome this problem, implementation of soft starter can be one of the solutions. The soft starter with varying firing angle will be tested in order to provide a low inrush current during start-up of three-phase induction motor. Then, the best possible firing angle is further analysed with different rated power rating of induction motor.

1.3 **Objective of Research**

The aim of this research is to improvise the soft starter and firing angle circuit as a new power electronic motor starter for three-phase induction motor and compared with direct on-line (DOL)starter. The specific objectives are:

- a) To study and implement the soft starter device as a method to mitigate high inrush current
- b) To investigate the best firing angle solution of the soft starter in mitigating high inrush current
- c) To compare the performance between soft starter and direct on-line starter otected by (DOL) for mitigation of high inrush current at ranging rated power three-phase induction motor

Scope of Research 1.4

To achieve the research objective, the scope of research has been determined. The scope of research is to mitigate the high inrush current during start-up of threephase induction motor which is targeted 50% to 70% of current reduction.

This mitigation of the high inrush current is implemented by using soft starter and all works will beconducting and simulated in the PSCAD software. The soft starter parameters was set-up in ideal condition connected to three-phase induction motor which is wound type with varied rated power parameter to 116kVA, 232kVA and 435kVA. The chosen values of rated power are based on standard NEMA Code Letters.

The reduction high inrush current during start-up of induction motor is by concept of limiting high starting current. Larger rated power required higher mitigation of inrush current.

1.5 Thesis Outline

This thesis elaborates of improvisation soft starter system as a power electronic device that have ability in mitigate of inrush current during start-up period for an induction motor. This is based the literature review studies in current technology that been used and controller implemented in the industries in limiting of high current occurrence. Soft starter consists of numerous power semiconductor devices which is function as switches for the controller part. This controller controls the pulse triggering and the pulse was sent to thyristor for limiting the current before pass to motor.

Chapter 1: Explain the introduction of research for soft starter methods. It also states three of objectives that achieved during the research based on the scope.

Chapter 2: Presents a detailed discussion for the literature on the characteristic of inrush current, how it occurs, and what the impact for induction motor. To overcome this unwanted inrush current, there is also review for methods of soft starter and that can be used as a solution to overcome the inrush current. Lastly, review detail for soft starter on how they operate to overcome this inrush.

Chapter 3: Discuss on the methods to conduct the soft starter research and how this method could fulfill the objectives.

Then, improvise of designed controller for the soft starter by using Power System Computer Aided Design (PSCAD) software. This improvisation of designed soft starter include for the whole main circuit which is firing control circuit, the antiparallel thyristor circuit and the parameters used for source and induction motor.

Chapter 4:Showing the simulation results of proposed soft starter for controlling and limiting the inrush current at induction motor.Then, the soft starter will implement to direct of line. Then the best firing angle will be figured-out by simulation. Finally, the most optimized result are summarized and compared.

In conclusion, Chapter 5 gathers and collects all the information from the research conducted and finally concludes with some recommendations and suggestions for future work and improvement for power system industry.

This terms of the street of th

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

To achieve a better result of outputs, the research has analyzed and reviewed a lot of journals and papers that have been done by previous researchers. Most of the informationwere gathered and collected such as study dissertation, journal papers, guidelines and etc that involving the topic of inrush current and soft starter. Also, the advantages and disadvantages various type of motor starting that have been reviewed.

For more focusing in soft starter, the research have been made and detailed study for several semiconductor device, the components build-in and the construction circuit to choose which is more suitable in this project. There have various type of starting motor and have variance in spec of operation, the difference in maintenance cost, installation cost, the reliability to the industries and the protection provide through each motor starting method should be considered.

However, the most important and main criteria to be fulfilled for this research was which is the best method could optimum mitigate high inrush current and exploration is made to analyze the magnitude of the inrush current itself for various criteria of motor.

2.2 Power Quality Issue in Power System

Rapid technological developments today of electric utility and end users of electrical power are created increasingly of quality of electrical power. Power quality is mainly related to compatibility of supply system and loads. The definition of power quality is a set of electrical characteristics that excess a quantity of equipment to function in its intended way without have any loss of performance or life expectancy. When the electronic equipment was in high usage such as information technology equipment for example adjustable speed drive, programmable logic controllers, energy efficient lighting led and so on, this make completely change of electric loads quality. This loads coincidently become the high potential the reason why and the major victims of power quality issues. Due to their non-linearity, all these loads create disturbances in voltage waveform. (Alam& Gain, 2014).

The outcome of performance electronic equipment devices depend on to the power quality level. Power quality problem can be identified as the abnormality of current and voltage from its original waveform. Any power problem established in voltage, current or frequency abnormalities those results in failure or disoperation of customer equipment. One of generally factors causing power quality deteriorate is a fault occurs either at distribution or transmission level, it may create voltage swell or sag in the whole system or some part of the system. The most common power quality problem that exists in power network with electrical machines are inrush current, voltage sags and voltage transients as well as harmonics (Arrillaga, Watson& Chen, 2000). This entire power quality problem can affect the performance and reliability for the sensitive electronic parts and could breakdown the motor system capabilities. At the present time with the advanced technology and the growing several of electronic devices have impact on the power supply quality and tend to become power quality problem. There was much way solution for this issue. The new method for power quality with combination of power semiconductor switches and a few passive components is one of the solutions which are suitable to compensate rapidly changing load and reactive power.

2.3 Types of Induction Motor

There are 2 types of induction motor, one is called wound motor and the other one called a squirrel-cage rotor. For squirrel-cage motor, its motor rotor contains conducting bars laid which connected series into slots carved in the face of motor and it was shorted together with large shorting rings. This motor called squirrel cage because the design is referred to squirrel-cage rotor because the conductors, if examined by themselves, would look like one of exercise wheels that squirrels run on (J.Chapmen, 1991).

The wound rotor induction motor has a stator like squirrel cage induction motor, but its rotor with insulated winding brought out via slip ring and brushes. The configuration and design of wound-rotor motor are unlike from squirrel-cage motors, especially in design of rotor. As per mentioned of winding squirrel-cage motor are shorted-circuited by end ring. However, wound-rotor motor is not short-circuited, but connected in three-phase configuration as in Figure 2.1.