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Abstract- Electromyography (EMG) is a study of muscles 
function through analysis of electrical activity produced from 
muscles. This electrical activity which is displayed in form of 
signal is the result of neuromuscular activation associated with 
muscle contraction. The most common techniques of EMG 
signal recording are by using surface and needle/wire electrode 
where the latter is usually used for interest in deep muscle. This 
paper will focus on surface electromyography (SEMG) signal. 
During SEMG recording, several problems had to be 
encountered such as noise, motion artifact and signal instability. 
Thus, various signal processing techniques had been 
implemented to produce a reliable signal for analysis. There are 
also broad applications of SEMG signal particularly in 
biomedical field. The SEMG signal had been analyzed and 
studied for various interests such as neuromuscular disease, 
enhancement of muscular function and human-computer 
interface.   

 
I.    INTRODUCTION 

 

This paper will review the works on surface 
electromyography (SEMG) signal processing as well as the 
use of SEMG signal analysis for clinical application and 
engineering research such as prosthetic arm and speech 
recognition. In the beginning, this paper will briefly go 
through the basic theory of myoelectric signal generation. 
Next, the signal processing techniques applied for SEMG 
signal will be explained. It include methods of signal 
acquisition process particularly noise removal and also 
analysis of the signal such as amplitude and spectral analysis. 
This paper will also look at several works and literatures on 
the use of SEMG technique as a tool for various applications 
such as clinical diagnosis, motion analysis, prosthetic device 
and speech recognition. Finally, this paper would have 
compiled several recent works on the application of SEMG 
signal processing and analysis. However, it is not the 
objective of this paper to discuss and choose the best 
techniques for SEMG signal analysis since different 
techniques is used for a particular purpose. 

 
 
 

 

II. ORIGIN OF MYOELECTRIC SIGNAL 
 
Electromyography (EMG) is the study of muscle function 

through analysis of electrical potential that emanates from 
the muscle itself. EMG nowadays had become an important 
toll in  

 
biomedical and clinical application. Thus, the detection, 
processing and analysis of EMG signal has become a major 
research area in biomedical field involving wide range of 
expertise from physician, engineer to computer scientist. 
Study of EMG is said to begin as early as 17th century. 
Nevertheless, not until the last couple of decades, the EMG 
study had been intense due to the use of modern electronic 
devices and equipment along with new techniques in signal 
processing. 

 The origin of EMG is closely related to the work of 
nervous system. Electrochemical transmission between 
nerves starting from the brain produces action potential 
which propagates through nerve fibers. Action potential 
moves along nerve fiber and it will finally stimulate the 
skeletal muscle. This stimulation creates muscle contraction 
which then results in movement of human limbs. Action 
potential acts on a single nerve and there is vast number of 
skeletal muscle fibers. Thus, the electrical potential from 
muscle recorded for EMG is actually superposition of action 
potentials acting on skeletal fiber muscles [1]. 

Representation of electrical potential in form of time 
varying signal is what we called as EMG signal. By studying 
the EMG, one is actually looking into the characteristics of 
body movement due to muscle contraction activity. 
Obtaining EMG signal from human includes several 
processes involving recording, data acquisition, signal 
conditioning and processing. Recording of EMG signal is 
done by mean of electrodes. Three types of electrodes that 
are commonly used is wire, needle and surface electrode 
where the latter being the most widely used since it is non-
invasive [2]. With different kind of electrode, the EMG 
signal that obtained might contain different characteristic. 
That tells why the terms like ‘surface EMG’ and ‘needle 
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EMG’ is used in literature, that is to specify the type of 
electrode used for recording. Most of the literatures reviewed 
in this paper either specifically mention the term ‘surface 
EMG’ or clarify the use of surface electrode in its 
methodology. 

 
III. SURFACE EMG SIGNAL ACQUISITION 

 
A.    Amplification  

EMG signal obtained by electrode is relatively small with 
amplitude range up to 10 mV or ±5 mV [3,4]. This amplitude 
range might be too small for further processing. In most 
applications, EMG signal need to be digitized and sent to 
processor, microcontroller or CPU for feature extraction. 
Since signal with insufficient amplitude range might not be 
feasible to be analyzed, amplification of the signal is a 
necessity. Usually this is done with instrumentation amplifier 
built specifically to amplify biosignal. Prior to amplification, 
a pre-amplifying stage would also be necessary to provide 
initial amplification and converts the signal to a low level of 
impedance before it is fed to the main amplifier [5].  

Instrumentation amplifier could be constructed using 
general purpose op-amp such as LM 741. However it is also 
available in form of a special function integrated circuit (IC). 
Examples of instrumentation amplifier IC used in literatures 
are the Analog Devices AD 620 [6,7], Burr-Brown INA 102 
[5] and Texas Instruments INA 128 [8]. The amplification 
gain varies according to amplifier manufacturer. Some 
literatures record an overall gain of 70,000 starts from 
preamplifier stage [5]. Others use smaller gain from 600, 
1000 to 10,000 [9] and 50,000 [10].  

 
B.    Noise sources and removal 

A raw EMG signal sometimes contains inevitable noise. 
With the presence of noise, the data of muscle contraction 
characteristic would no longer be genuine. Noise in EMG 
signal might caused by i) inherent noise in electronics 
equipment, ii) ambient noise from electromagnetic radiation, 
iii) motion artifact and iv) inherent instability of signal [11]. 
Noise could also originate from the electrode. The metal-
electrolyte contact of electrode is intrinsically noisy and it 
has become an important factor in EMG noise. It is a limiting 
factor for detection of very small potentials.  

An EMG recording system with wire that connects surface 
electrode with the adjacent amplifying equipment could be 
vulnerable to pick up main hums and other electrical 
interference [12]. Therefore, to solve the noise problem  
which might results from using lengthy wire, Johnson et al. 
(1977) had proposed a pair of surface electrode combined 
with differential amplifier in a single module [12]. The 
preamplifier circuit built for this module has operational 
characteristics which allow surface EMG signals to be 
recorded with effective suppression of extraneous electrical 
interference. This device which is called miniature skin-
mounted preamplifier had been used in several literatures.          

Motion artifact is another source of noise. It could be 
caused by electrode moving on skin surface and electrode 
wire movement. Noise produced by motion artifact is in the 
range of 0 to 20 Hz and the easiest way to deal with this 
noise is to filter it out with high-pass filter [13]. Regardless 

of motion artifact noises, SEMG signal in 0 to 20 Hz range 
do provide significant information on firing rates of active 
motor units [14]. However, in most works, information 
contained in signal of this range is not of interest.   

There are cases where artifact noise is unavoidable due to 
natural and intentional causes. For example, Fratini et al. [15] 
works on removing motion artifact from surface EMG record  

 
Fig. 1. Three figures showing a raw SEMG signal (above), SEMG signal 

with presence of small ECG artifacts (center) and SEMG signal with power 
line interference (below). 

 
ings in Whole Body Vibration. Vibration training is used in 
sport medicine to enhance athletic performance. Surface 
EMG recording is done on subject undergoing vibration 
training for muscle activity evaluation. The vibration would 
produce motion artifact and creates noise. Fratini et al. [15] 
used adaptive filtering to abolish such noise. Accelerometers 
are placed onto platform or directly on muscles providing 
error signal shape to be cancelled from the raw SEMG 
signal. The results obtained shows effective cancellations of 
the vibration frequency. 

In general, surface electrode is used to pick up any 
biosignal. Obviously, interference from other biosignal is 
very likely during surface EMG recoding. 
Electrocardiography (ECG) is the most common source of 
interference and often known as ECG artifact. A number of 
literatures had studied location of surface EMG recording 
that affected by ECG artifact. Among the muscle location 
that is vulnerable to ECG interference are trunk muscles 
[16,17], back muscles [18,19] and chest.      

Various methods had been studied for ECG artifact 
removal from SEMG signal. High-pass filtering using 
Butterworth filter is probably the most simple and 
straightforward idea. Value of cut-off frequency must be 
chosen in the way that it would not affect the real SEMG 
signal. The optimal value of cut-off frequency as proposed in 
some literatures would be around 30 Hz [20,21].     

However, high-pass filtering is not the only way. Zhou et 
al. [22] for instance had used adaptive ECG spike clipping in 
addition to digital high-pass filter [22]. In this work, the 
SEMG signal is collected from pectorialis major muscles of 
adult male subjects. For, digital high-pass filter, cutoff 
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frequency varied between 10 to 100 Hz and the order varied 
from 1 to 6. Adaptive ECG spike clipping on the other hand 
is a threshold-based suppression method. Signal amplitude 
that exceeds the threshold value will be clamped to the 
threshold. Both methods are effective in removing ECG 
artifact. But when combined, the SNR performance 
improved by 14% over the two methods individually.     

Adaptive filter is another method that had been used for 
ECG artifact removal [19][23][24]. In work by Marque et al. 
[19], a raw SEMG signal that contains ECG artifact is 
subtracted with a reference signal which is correlated with 
the ECG signal. The result is a denoised signal which is the 
estimate of the SEMG signal of interest. Marque et al. [19] 
conclude that adaptive filtering provides an efficient tool for 
ECG rejection with advantage of ability to rejects all 
components correlated to QRS complex.   

Another source of noise in SEMG signal is the power lines 
with frequency of 50 or 60 Hz. For this type of noise, among 
methods that had been used in literatures are digital notch 
filter, spectrum interpolation [25] and adaptive filtering [26]. 
For notch filter, it could be designed with notch centered at 
power lines frequency and 1 Hz width. However, there is 
drawback with notch filter. Desired signal will be distorted 
since power lines frequency might contain components of the 
desired SEMG signal [25]. Some literature does not 
recommend the use of notch filter as it is not a good practice 
[14]. In spectrum interpolation method, given an SEMG 
signal, true power spectrum of certain frequency in that 
signal can be estimated by interpolation of the curve at that 
frequency. This method is like a notch filter with limited 
attenuation instead of infinite null [25]. Adaptive filtering 
method for power lines noise removal had been done by 
Yacoub and Raoof [26]. In [23], adaptive filtering is 
developed aimed to remove both power lines and ECG 
artifact interference.  

There are numerous other literatures regarding noise and 
artifact removal from SEMG signal using methods that have 
been discussed above. Example of recent literatures on this 
area are removing electromagnetic noise from single 
electrode SEMG signal [27] and the use of digital 
Butterworth filter to subtract noise from low magnitude 
SEMG using simulated EMG signal [28]. Also there are 
literatures that work on using neural network for EMG noise 
removal purpose [29,30]. 

 
IV. SEMG SIGNAL ANALYSIS 

 
A.    Amplitude estimation and analysis 

One way to evaluate SEMG signal is by analysis of signal 
amplitude. EMG signal in general is a stochastic process. Its 
amplitude at any instant time is random where it could 
fluctuate between above and below zero volts and the 
fluctuation might be very rapid. In digital signal processing, 
the fluctuations could be removed by obtaining the average 
of the random values. It is similar to smoothing operation in 
analog. But, since the signal fluctuates over negative and 
positive value, simply averaging the signal might produce 
meaningless results. Thus, before this averaging task could 
be done, rectification of the EMG signal is necessary. 

Usually, full-wave rectification is preferred so that all the 
energy of the signal could be retained [31].  

Study of amplitude estimation of EMG signal had become 
a distinct area. Most early literature had cited the work by 
Inman et al. [32] which are regarded as the first continuous 
EMG amplitude estimator. It is a classical hardware 
approach where signal is full-wave rectified before it is low-
pass filtered using resistor-capacitor. Nowadays, signal 
analysis involves digital signal processing either by computer 
software or processor. More techniques had been studied that 
proved to be more efficient than the traditional approach.  

To analyze the amplitude of EMG signal, parameters that 
are frequently used are root mean square (RMS) and mean 
absolute value (MAV). RMS is square root of average power 
of a signal for given period of time. MAV on the other hand 
is area under the signal. As the name implies, MAV only 
engage the absolute value of the amplitude. Thus, the EMG 
signal had to be rectified before implementing MAV. The 
difference between these two parameters is that RMS 
involves a measure of the power of the EMG signal. Due to 
this fact, RMS is usually preferred than MAV. Also, 
assumption that probability density of surface EMG is 
Gaussian had made RMS to be the maximum likelihood 
estimator of EMG amplitude [33]. However, this is not 
always the case. When EMG signal is modeled as Laplacian, 
MAV had shown to be better than or at least as justified as 
RMS [34,35].     

In other literatures, to obtain optimal estimation of EMG 
signal amplitude, temporal whitening followed by 245 
millisecond window of moving average root mean square 
(MARMS) had been implemented [36,37]. Comparing the 
result with the traditional amplitude estimator described in 
[32], MARMS with temporal whitening filter had shown 
major improvement in SNR performance. While previous 
studies deal with stationary EMG signal using fixed window 
length for smoothing, much later research works on dynamic 
EMG where exerted force or muscle length change during 
contraction. To estimate the amplitude of dynamic EMG, 
adaptive smoothing window length had been proposed [38]. 
In this work, simulation and experimental results conclude 
that the advantage of adaptive processor is found to be 
situation dependent. Meaning that in only certain cases, 
adaptive window length might have advantage over fixed-
length.  

 
B.    Frequency Analysis 

Evaluation of SEMG signal by analysis of frequency 
spectrum is another method that is used by researchers. Upon 
obtaining the frequency spectrum, the measure of the signal 
is assessed by parameters like power spectral density (PSD), 
mean frequency and median frequency. Definition for each 
of these parameters is: 

 
1)  Power Spectral Density: amount of power per unit of 
frequency as a function of the frequency. It is calculated by 
squaring Fourier Transform from each segment of data and 
then averaging them. PSD shows how power of signal in 
time series distributed with frequency. 
2)  Mean Frequency: it is related mathematically to PSD as 
in (1). Also known as centroid frequency. 
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3)  Median Frequency: the frequency at which the spectrum 
is divided into two regions with equal power. Equation (2) 
shows the expression for median frequency. 
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S(f) in (1) and (2) is PSD of the signal. There is no clear 

definition on mean and median frequency only that it is 
defined by mathematical equation. The result of frequency 
analysis often used when the SEMG that is measured is 
analyzed statistically, usually involving samples of data from 
a number of subjects [39]. Also frequency analysis is often 
used in study of muscle fatigue [40]. 

 
C.    Time-Frequency Analysis   

Fourier Transform is the most prominent method used for 
frequency analysis of time domain signal. It is suitable for 
stationary signal where all frequency components present at 
all time. Conversely, there is also a type of signal having 
various components of frequency in different instant of time. 
In other words, the frequency components vary with time. 
This type of signal is called non-stationary signal. SEMG 
signal is a non-stationary type signal. 

Evaluation for non-stationary signal is better done with 
methods used for time-frequency analysis. The time-
frequency approach on SEMG signal had been studied and 
applied by researcher with implementation of various 
methods such as Short Time Fourier Transform (STFT) 
[41,42], Wigner-Ville Distribution (WVD) [43-45], Choi-
Williams Distribution (CWD) [46] and Wavelet Transform 
(WT) [47-50]. 

Comparison between different methods of time-frequency 
approach on SEMG signal had been studied and reported in 
several literatures. Canal [51] had compared WT with STFT 
and found that WT had good resolution and high 
performance for visualization of neuropathy and myopathy 
activity. A much wider comparison study had been done by 
Karlsson et al. [52]. Four methods had been used which are 
STFT, Running Windowed Exponential Distribution 
(RWED), pseudo Wigner-Ville distribution (PWVD) and 
continuous Wavelet transform (CWT). According to this 
literature, analysis using STFT, RWED and PWVD might 
results in difficulty to achieve a good time and frequency 
resolution. As for CWT, it has been found that it is very 
reliable in analysis of bioelectrical signals in general and 
shows better statistical performance than other methods. 
Much earlier comparison study was done by Davies & 
Riesman [53] when they implemented the time-frequency 
analysis on SEMG during muscle fatigue. STFT, WVD and 
CWD had been chosen. In its discussion, Davies & Riesman 
[53] found that WVD is not a precise representation of the 
changing of frequency components with fatigue. STFT 
shows clearly the spectrum compression as muscle fatigues 

but CWD is said to most accurately show the frequency 
compression. 

 
V. APPLICATIONS OF SEMG 

 
A.    Estimation of Muscle Fiber Conduction Velocity 
(MFCV) 

Conduction velocity refers to the velocity in which action 
potential propagates through nerve fiber. In case of muscle, it 
is known as muscle fiber conduction velocity (MFCV). This 
velocity is dependent on certain properties of the fiber itself 
such as diameter and type.   

Signal from SEMG is useful in estimating the value of 
MFCV. Methods for this task are either two-channel based or 
multi-channel based. The estimation is usually done by 
determining the average delay between SEMG signals 
recorded from two/multi points. Location of electrodes for 
recording is in the way that the propagation moves along the 
fiber between the electrodes.  

Numerous literatures had report studies on MFCV using 
SEMG. While a number of them had interest for medical 
diagnosis purpose [54,55], there are lot of others only focus 
on the study of MFCV characteristics [56-58]. Techniques 
for MFCV estimation had been a subject of interest with a 
number of approaches had been proposed such as the use of 
two-dimensional SEMG recording [59,60], regression 
analysis between spatial and temporal frequencies of 
multiple dips introduced in the EMG power spectrum [61], 
using normalized peak-averaging technique [62] and 
minimization of the mean square error between time-filtered 
versions of two surface EMG signals [63].    

 
B.    Diagnosis and clinical application with new electrode 
design 

There were several review reports regarding the reliability 
of SEMG technique for diagnostic purpose [64-66]. Earlier 
reports had argued the use of SEMG as an effective 
diagnostic tool especially for neuromuscular disease due to 
lack of literature to support the fact [64]. SEMG also had 
been compared to needle EMG where the former is said to be 
significantly inferior to the latter for neuromuscular disorder 
evaluation [65]. However, despite findings from such review, 
research on SEMG application for diagnosis of certain 
disease still moves on. It might be due to the non-invasive 
nature of the SEMG method that makes it more convincing 
to be used on subjects which apparently are the patients 
themselves.    

One of the problems with SEMG when used as diagnostic 
tool is the difficulties in extracting features of single motor 
units which is necessary for diagnosis of neuromuscular 
disorders [67]. However, recent development on surface 
electrode had brought to possibility to overcome this 
obstacle. A multiple surface electrode had been designed 
with capabilities to detect electrical activity of muscle up to 
single motor units [68,69]. Several recording technique that 
used such type of electrode had been introduced. High 
density-surface EMG (HD-SEMG) uses multiple closely 
spaced electrode overlying restricted area of skin [70]. There 
is also high-spatial-resolution surface EMG (HSR-EMG) 
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which uses multiple-electrode array combined with spatial 
filter procedure [71].     

HD-SEMG technique had been tested for clinical 
application on detecting post-poliomyelitis syndrome by 
comparing the SEMG between healthy subjects and those 
with the syndrome [72]. The result of raw signal analysis had 
shown significant differences between the groups. Based on 
outcome of this literature, the authors had urged that more 
studies should be initiated to explore the diagnostic value of 
HD-SEMG. Unfortunately, in another literature, it is reported 
that HD-SEMG had not been widely used as diagnostic tools 
in clinical neurophysiology practice [70]. 

A number of recent studies that make use of multiple 
surface electrodes for clinical application had been reported 
in literatures. For example, investigation of motor unit 
characteristics of biceps brachii done on post-stroke patients 
[73], investigation on SEMG signal in carpal tunnel 
syndrome to observe alteration on the signal [74] and 
analysis of interspike interval in neuromyotonia syndrome 
[75].   
 
C.    Study on Parkinson Disease patient 

Parkinson disease (PD) is a degenerative disease of brain 
which results in impairment of motor functions, impaired 
control of agonist muscles and speech disability. Treatment 
for PD, apart from medication, involves physical exercise 
and training to improve mobility and flexibility. Comparison 
of SEMG signal before and after medication or physical 
training on PD patient provides a useful evaluation for the 
effectiveness of the treatment.  

Flament et al. [76] try to investigate the changes in 
electromyographic activity associated with the changes in 
movement performance in PD patients. Based on the 
observation on SEMG signal pattern, patients undergone 
physical training display fractioned, multi-burst agonist 
pattern, which indicates the characteristics of PD patients’ 
SEMG recordings. However, patients’ performance changed 
in a manner similar to that which has been observed for 
performance curves in neurologically normal subjects.  

Earlier literature by Robichaud et al. [77] works on a 
similar task, but the interest is on the effect of medication. 
When the subjects were off medication, they lacked the 
ability to modulate the agonist EMG burst duration with 
changes in movement distance. The ability to modulate 
agonist EMG burst duration is characteristic of the SEMG 
patterns observed in healthy subjects. Medication diminished 
the clinical signs of Parkinson's disease, but in other way it 
did not restore agonist burst duration modulation with 
movement distance.   

Other literatures that focus on PD are the use of wavelet to 
analyze cross-correlation time-frequency for multiple SEMG 
signals in Parkinson’s disease [47], effect of medication by 
analysis on SEMG signal using wavelet approach [78], and 
analysis of SEMG signal morphology in PD based on 
histogram and crossing rate (CR) analysis. There are also 
works on feature extraction of SEMG signal in PD using 
principal component approach [79,80].  

 
 
 

D.    Biomechanics and Motion Analysis 
Studies in motion or body movement are probably the area 

in which SEMG technique is most well suited. A simple 
bipolar or monopolar electrode is already sufficient for this 
purpose. The challenge is perhaps to deal with anomaly in 
signals due to noises or motion artifact. Application of 
SEMG in motion study is quite huge. It is possible to say that 
it can be used in almost all type of works concerning muscle 
movement, not only on limbs but also face [81,82], not 
limited to human but also on animals [83].   

In sports science, movement and motion are always been a 
subject of study. Data from SEMG is used to obtain 
statistical analysis result for various purposes which include 
study in possibilities of injury [84], effect of different skills 
of sports on neuromuscular activity [85], effect of detraining 
[86], examination on rapid muscle force characteristics after 
high level match play [87], quantification of muscle 
activation pattern of certain activities involving movement 
[88], just to name a few.     

 
E.    Prosthetic device 

In developing prosthetic devices, researchers had make use 
of various type of input to the device for mean of control. 
Bioelectrical signals such as action potential, nerve signal, 
EEG, EMG or even movement of eyes retina are among the 
types of parameters that could be utilized for prosthetic 
device control. Due to the fact that prosthetic devices are 
often used to replace the missing part of human body, 
bioelectrical signal apparently fit in well to the system. Study 
on the use of SEMG for prosthetic device had initiated back 
from 1960s [89]. Until present days, numerous literatures had 
been produced regarding studies in this area.  

Initial work on the development of EMG controlled 
prosthetic device would involve analysis of signal for 
discrimination, classification or feature extraction [90-92]. In 
a case of developing prosthetic device for amputees for 
instance, SEMG data should be acquired from subjects to 
analyze some SEMG signal characteristic. Data could be 
taken from muscles located at residual part of the limb where 
the prosthetic device will be attached to [7]. Remnant of 
muscles in residual limb might link with muscles of the lost 
limb. Thus, the SEMG signal obtained earlier could be 
analyzed and utilized for prosthetic device control so that it 
could imitate the movement of original limb.   

The location of surface electrode on muscles for SEMG 
acquisition varies according to the type of prosthetic device. 
For prosthetic hand, extensor carpi ulnaris and flexor carpi 
ulnaris located on the forearm are the recommended spot for 
electrode placement in some literature [93,94]. In certain 
application, especially that engages a much complex design, 
more electrodes might be needed to obtain more information 
particularly on characteristic of different type of movement. 
An example of such design is prosthetic hand complete with 
fingers. Study by Tenore et al. [95] on decoding of 
individuated finger movements had used up to 32 electrodes 
attached on different area of forearm.         

In term of SEMG feature extraction method, various 
techniques had been reported in literatures. There are two 
categories of feature extraction techniques which are time-
domain feature and time-frequency domain feature. Often 
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researchers choose to implement multiple techniques and 
then select the most suitable. For example, there is a work by 
Huang and Chiang [96] on DSP-based controller for 
prosthetic hand. Eight techniques for SEMG feature 
extraction had been used which are the integral of EMG, 
waveform length, variance, zero crossings, slope sign 
changes, Willison Amplitude, autoregressive model and 
cepstrum analysis. Results from all these techniques will be 
combined in classification stage to choose the highest 
classification rate before the selected feature implemented in 
the DSP [96]. The choice of technique to be used differs 
between literatures. Some literatures only interested in time-
domain features. In a work on developing fingers movement 
of prosthetic hand for example, time-domain features 
performed better in real-time decoding of hand and wrist 
movements [97,98][95]. Another work on prosthetic hand 
had used both time and time-frequency domain for feature 
extraction and then implement the result on a neuro-fuzzy 
system for pattern recognition [99].   

 
F.    Speech recognition 

The idea in developing an EMG based automatic speech 
recognition (ASR) system is based on assumption that 
articulatory facial muscles might contain some kind speech 
information [100]. Movement of lips or jaw during speech 
production is obviously synchronized with contraction and 
relaxation of certain facial muscles. Thus, SEMG signal 
acquired from these facial muscles, if it contain unique 
characteristic according to the corresponding speech signal, 
could provide an alternative ASR system which is 
advantageous when applied in a noisy environment. 

Several literatures had initiated a study in this particular 
area. Kumar et al. [101] used artificial neural network for 
classification of speech based on SEMG signal. This study 
involves three facial muscles which are mentalis, depressor 
anguli oris and massetter. Manabe and Zhang [102] had 
implemented multi-stream Hidden Markov Model (HMM) 
for EMG-based speech recognition where no voice 
generation involve, only movement of mouth. Jia et al. [103] 
had worked on unvoiced digital Chinese recognition based 
on facial myoelectric signal. Genetic arithmetic had been 
used in this work for selecting the features of myoelectric 
signal as input of support vector machine classifier. The 
result from this work show that SEMG based speech 
recognition is a promising way towards an ASR system 
[103]. Another recent work from Lee [104] had also used the 
Hidden Markov Model to model the SEMG signal for certain 
Korean words. 

 
VI. DISCUSSION 

 
SEMG signal proved to be a useful tool for various 

applications concerning clinical purpose for diagnostic, sport 
science for performance improvement and injury detection as 
well as human-computer interface with regard to prosthetic 
device and speech recognition. Study on muscle fatigue is 
another well-known application of SEMG. Although there is 
some argument on effectiveness for use in diagnostic 
purpose, recent development on surface electrode design had 

brought to a promising future of non-invasive SEMG for 
clinical application.  

Other than that, there are a lot of other applications of 
SEMG particularly for human-computer interface. As long as 
there is SEMG data, it could be utilized in any way. Just to 
list a few possible applications, SEMG could be 
implemented in control of robotic arm that is used for 
industrial purpose, to characterize hand gesture recognition 
[105] which might be useful in sign language, design a 
wheelchair based on SEMG signal [106] or develop an 
emotion recognition system [107]. Recently there is a project 
by students from Universiti Malaysia Perlis on detecting 
SEMG signal of drowsiness for developing a system to alert 
drivers [108].   

However, in order to employ the SEMG, one still had to 
consider the effectiveness of the SEMG recording equipment 
that is used. For example, the number of electrodes could 
sometimes be crucial. To obtain details of different 
movement such as in prosthetic fingers, a sufficient number 
of electrodes had to be attached on the forearm. Record from 
each location of muscles that involve in movement of fingers 
is important to provide different type of features.       

Another crucial aspect is the knowledge on analysis 
technique of SEMG signal. It is essential in order to obtain 
features of the SEMG signal. In utilizing the SEMG as a tool, 
its features and characteristic is the key to provide 
information which then linked with the outcome of the study. 
Some application particularly on biomechanics and motion 
study had make use of statistical analysis. Features provided 
by SEMG obtained from numerous subjects are gathered to 
obtain some hypothesis according to interest of the study. 
Various methods of analysis are classified into amplitude, 
time domain and time-frequency domain. It is up to the 
researcher to select the most reliable, but often more than one 
method is implemented to provide variety in results. 

 
VII. CONCLUSION 

 
Study on SEMG is very broad, ranging from design of 

electrodes, recording techniques, analysis methods and 
application for various purposes. SEMG should be utilized 
especially for clinical diagnosis since its non-invasive 
approach makes it much more comfortable for subjects. But 
still there is a lot to improve especially on design of 
recording equipment. The design of surface electrode should 
be enhanced so that SEMG could be fully reliable for clinical 
purpose. However, for certain application especially human-
computer interface, a basic requirement of recording 
equipment is sufficient. 
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