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Penyokong Pemangkin yang Berliang daripada Tanah Liat dan Kalsium Karbonat 

Termendak untuk Pertumbuhan Bahan Nano Karbon 

 

ABSTRAK 

 

Pada masa ini, bahan berliang digunakan secara meluas sebagai penyokong pemangkin, 

penjerapan gas, cecair, dan penderia gas. Dalam kajian ini, penyokong pemangkin 

diperbuat daripada campuran tanah liat dengan jumlah kalsium karbonat termendak yang 

dikawal iaitu 10, 15, 20, dan 25 peratus berat dengan melalui kaedah replika busa polimer. 

Campuran tanah liat, kalsium karbonat termendak, dan air suling dikisar dengan 

menggunakan 2 tempoh kisaran yang berbeza iaitu 24 dan 48 jam untuk membentuk 

buburan seramik. Kemudian, proses ini disambung dengan perendaman busa polimer ke 

dalam buburan seramik. Akhir sekali, seramik anum akan dikeringkan dan disinter pada 

1250°C selama 2 jam. Objektif utama kajian ini adalah untuk mengkaji kesan 

penambahan kalsium karbonat termendak dan tempoh pengisaran terhadap sifat-sifat 

fizikal dan mekanikal penyokong pemangkin. Rangka tiga dimensi dengan struktur 

berliang dapat dilihat dengan jelas di dalam semua sampel. Sampel yang diperbuat 

daripada 25 peratus berat kalsium karbonat termendak dan masa pengisaran selama 48 

jam mempunyai kekuatan mampatan yang tinggi iaitu 1.6 MPa. Selain itu, analisis varians 

sehala (ANOVA) menunjukkan bahawa peningkatan kalsium karbonat termendak telah 

meningkatkan kekuatan mekanikal penyokong pemangkin dengan pekali penentuan (R2) 

adalah 0.92. Hal ini kerana kewujudan fasa baru iaitu anortit (2CaAl2Si2O8), mulit 

(3Al2O3·2SiO2) dan gehlenit (3Ca2Al2SiO7). Selain itu, ketumpatan busa meningkat 

apabila peratus keliangan menurun. Ketumpatan busa untuk sampel yang diperbuat 

daripada 25 peratus berat untuk tempoh pengisaran 48 jam adalah lebih tinggi (1.05 

g/cm3) berbanding sampel yang lain. Sebaliknya, peratus keliangan menurun (55 peratus) 

apabila jumlah kalsium karbonat termendak dan tempoh pengisaran meningkat. Di 

samping itu, ketumpatan ketara (2.79 g/cm³) adalah hampir sama dengan ketumpatan 

teori untuk seramik anorthit iaitu 2.76 g/cm3. Hubungan antara kekuatan mekanikal 

terhadap peratus keliangan adalah negatif, di mana kekuatan mekanikal akan meningkat 

apabila peratus keliangan menurun. Sampel yang dikisar selama 48 jam menunjukkan 

sekaitan yang tinggi dengan pekali penentuan (R²) sebanyak 0.91. Manakala, hubungan 

antara kekuatan lenturan dan kekuatan mampatan terhadap ketumpatan busa adalah 

positif, dimana kekuatan mekanikal akan menurun apabila ketumpatan busa menurun. 

Sampel yang dikisar selama 48 jam menunjukkan sekaitan yang kuat dengan pekali 

penentuan (R²) sebanyak 0.81. Oleh yang demikian, sampel yang diperbuat daripada 25 

peratus berat komposisi kalsium karbonat termendak dan dikisar selama 48 jam adalah 

sampel yang paling sesuai digunakan sebagai penyokong pemangkin untuk pertumbuhan 

bahan nano karbon kerana mempunyai kekuatan mekanikal yang diperlukan. Bahan nano 

karbon telah di sintesis di atas permukaan penyokong pemangkin melalui kaedah 

pemendapan wap kimia. Ferosena dan aseton telah digunakan sebagai pemangkin dan 

sumber karbon. Suhu yang digunakan untuk proses ini adalah 750°C selama 30 minit. 

Bahan nano karbon adalah dalam bentuk kusut serta bergulung dan dapat dilihat di 

sepanjang topang penyokong pemangkin. 
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Porous Catalyst Support from Clay – Precipitated Calcium Carbonate for Carbon 

Nanomaterials Growth 

  

ABSTRACT 

 

Currently, porous materials were widely used as catalyst supports, adsorption of gases or 

liquid, and gas sensors. In this research, the fabrication of catalyst support utilised clay 

with controlled amounts of precipitated calcium carbonate (PCC) at 10 wt.%, 15 wt.%, 

20 wt.%, and 25 wt.% via a polymeric foam replication method. A mixture of clay, 

precipitated calcium carbonate, and distilled water were ball milled for 24 hours and 48 

hours milling durations in order to form ceramic slurries. After the impregnation process 

of polymeric foam into ceramic slurries, the green ceramic was dried and sintered at 

1250°C for 2 hours holding time. The main objectives of this research are to study the 

effects of precipitated calcium carbonate additions and different milling durations on the 

physical and mechanical properties of the catalyst support. The sample that was fabricated 

with 25 wt.% of precipitated calcium carbonate and milled at 48 hours was found to have 

the highest compressive strength which at 1.6 MPa. Besides, one-way analysis of variance 

(ANOVA) showed that the increase between 10 wt.% and 25 wt.% of PCC has 

significantly increased the strength of the catalyst support and the coefficient of 

determination (R2) at 0.92. The increase of the mechanical strength was attributed to the 

transformation of new phases such as anorthite (2CaAl2Si2O8), mullite (3Al2O3·2SiO2), 

and gehlenite (3Ca2Al2SiO7). On the other hand, foam density would increase when the 

percentage of porosity decreased. The sample that was fabricated with 25 wt.% of PCC 

and milling for 48 hours has the highest foam density (1.05 g/m3) compared to other 

samples. In contrast to the percentage of porosity, the porosity decreased to 55 percent 

after the amount of PCC and milling duration increased. The apparent density (2.79 g/cm3-

) was approximately similar with the theoretical density (2.76 g/cm3) of the anorthite 

ceramics. The correlations between the flexural and compressive strength on the porosity 

of the catalyst support have shown negative correlations where the mechanical strength 

would increase when the porosity decreased. Samples with 48 hours milling duration have 

shown a strong correlation with a coefficient of determination (R2) of 0.91. The 

correlation between the flexural and compressive strength on the foam density of the 

catalyst support has shown a positive correlation where the mechanical strength would 

decrease when the foam density decreased. Samples with 48 hours milling duration have 

shown a strong correlation with the (R2) of 0.81. Thus, the sample that was fabricated 

with 25 wt.% of PCC and ball milled for 48 hours was suitable for the application of 

catalyst support for the growth of carbon nanomaterials (CNMs) because it has higher 

mechanical strength. The CNMs were grown on the surface of the catalyst support via a 

chemical vapour deposition method at 750°C for 30 minutes reaction time. The ferrocene 

and acetone were used as a catalyst and carbon source, respectively. The tangled and 

curled carbon nanomaterials were observed along the strut of the catalyst support.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research background 

 

Catalysts such as gold (Au), iron (Fe) and platinum (Pt) are substances or 

materials that can be used to improve or increase the reaction rate in the specific process 

such as oxidation, gas and liquid adsorption processes (Hakeem et al., 2016; Rey et al., 

2016; Wang et al., 2016a). The performance of the catalyst can be enhanced by placing 

the catalyst on solid support also known as catalyst support. Porous ceramic are the most 

promising materials for catalyst support owing to their high porosity, high specific surface 

area, good thermal properties, high chemical stability and high mechanical strength 

(Antolini & Gonzalez, 2009; Kaiser et al., 2016; Mehr et al., 2016). As a consequence, 

numerous types of ceramic catalyst supports such as mesoporous silica and alumina 

catalyst supports have been developed (Li et al., 2010; Khosravi et al., 2016; Hu et al., 

2016).  

Several methods have been used to develop porous ceramic such as slip casting 

(Han & Shu, 2016), extrusion (Fiocco et al., 2016), foaming (Li & Liang, 2015), and 

replication methods (Gonzalez et al., 2016). In this research, the fabrication of catalyst 

support utilised clay and PCC via a polymeric foam replication method. Generally, the 

fabrication of the porous material using this method can produce porosity in the range of 
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40% to 95% (Kocakusakoglu et al., 2015). International Union of Pure and Applied 

Chemistry (IUPAC) categorises pore diameter (d) into 3 sections, namely microporous 

(d smaller than 2 nm), mesoporous (d between 2 nm and 50 nm) and macroporous (d 

larger than 50 nm) (Costacurta et al., 2007).  

Clay such as flint clay, china clay and ball clay has received widespread attention 

in the fabrication of ceramic since 5000 B.C. due to its availability and unique properties 

(Fahrenholtz, 2008). The properties of clay minerals such as hardening after sintering or 

firing process made the fired clay being widely used in structural building, and adsorption 

applications. Besides, clay minerals are also categorised as non-polluting materials and 

are currently used as depolluting agent (Louhichi et al., 2016). Precipitated calcium 

carbonate (PCC) is a synthesised calcium carbonate and has high purity of calcium with 

low particle size. Commonly, the PCC is synthesised from the limestone and waste 

materials that contains high percentage of calcium (Price et al., 2011).  

Carbon nanomaterials (CNMs) have been widely used as hydrogen storage, 

coating material to increase corrosion resistance and carbon dioxide (CO2) adsorbent due 

to the unique physical and mechanical properties (Heer, 2002; Ngoy et al., 2014). 

Basically, CNMs are divided into various types such as carbon nanotubes (CNTs) and 

carbon nanofibers (CNFs) (Guang et al., 2005). Various methods such as chemical vapour 

deposition (CVD), arc discharge, laser ablation, and electrolysis have been used to 

synthesise the CNMs  (Paradise & Goswami, 2007). In this research, the CVD method 

was used to synthesise the CNMs.  In fact, CVD method can produce high scale and high 

purity of CNMs (Su et al., 2000; Hoecker et al., 2016).           
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1.2 Problem statements 

  

i. The addition of calcium carbonate (CaCO3) such as limestone, chalk, and 

waste material into the clay minerals can enhance the physical and 

mechanical properties of the ceramic. However, the addition of the calcium 

carbonate into the clay minerals has a limit (Ewelina & Ma, 2013). Sutcu 

and Akkurt (2010) utilised paper processing residues (PPR) as a calcium 

carbonate source for the fabrication of anorthite ceramics. PPR contains 

only 32.91 wt.% of calcium oxide (CaO). They have found that the 

compressive strength of the ceramic decreased after the PPR was increased 

to 40 wt.%. The increasing of the impurities in the PPR has led to the 

decrease of the mechanical strength of ceramic. Thus, it is necessary to study 

the effects of various additions of high purity of calcium carbonate such as 

PCC on the physical and mechanical properties of the catalyst support. 

  

ii. The milling process in the fabrication of ceramic is very crucial in the 

homogeneity of two or more different particles (Lee & Iqbal, 2001). 

Furthermore, the reduction of the particle sizes has improved the 

performance of the sintering process and led to the improvement in the 

physical and mechanical properties of ceramic (Fang et al., 2009). Hence, it 

is important to study the effects of different milling durations on the physical 

and mechanical properties of the catalyst support.  
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iii. The growth of CNMs on the porous metal substrate was extensively studied 

by researchers. Previously, the researchers utilised graphene and stainless 

steel foam as porous metal substrates to grow CNMs (Liu et al., 2014; 

Latorre et al., 2016). However, the fabrication of porous metal substrates 

were expensive compared to the fabrication of porous ceramic substrate. On 

the other hand, the studies in the growth of CNMs on porous ceramic 

substrates such as alumina and mesoporous silica were limited (Mazumder 

et al., 2016). Therefore, it is necessary to evaluate the growth of CNMs on 

the porous ceramic. 

 

 

 

1.3 Objectives 

 

The present study is mainly to develop a catalyst support for CNMs growth. The 

primary objectives of this project are divided into the following categories: 

 

i. To fabricate a catalyst support from clay and controlled amounts of PCC 

via a polymeric foam replication method. 

 

ii. To analyse the physical and mechanical properties of the catalyst support 

at various amounts of PCC and different milling durations. 

 

iii. To investigate the correlation of mechanical strength over the percentage 

of porosity and foam density of the catalyst support via statistical analysis. 

  

iv. To evaluate the feasibility of the growth of CNMs on the porous ceramic. 
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1.4 Scope of study 

 

The first phase of this study began with characterised the chemical composition, 

mineralogical phase, microstructural analysis and weight losses of raw materials. Then, 

the process was followed by the fabrication of the catalyst support via a polymeric foam 

replication method.  

At the second phase the physical and mechanical properties of the catalyst support 

was characterised and tested. The chemical composition, mineralogical phase, physical 

characteristics such as density, porosity, and percentage of linear shrinkage of the catalyst 

support was investigated. Then, the mechanical properties of ceramic foam were analysed 

using compression and four-point flexural test. Then, the correlations between the 

physical properties and the mechanical properties of the catalyst support was evaluated 

using statistical analysis. 

The third phase of this study continued with the modification of the catalyst 

support surface. The catalyst support was coated with CNMs and the CNMs was later 

synthesised using CVD method.  
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 An overview of porous ceramic 

 

 Porous ceramic are commonly used as catalyst supports (Thompson et al., 2013; 

Zhu et al., 2013; Mendes et al., 2016), thermal insulators (Fukushima & Yoshizawa, 

2014), gas or liquid separations (Moreira et al., 2004), and heat exchangers (Yin et al., 

2016) due to their outstanding properties namely, high specific surface area, high 

porosity, low density, and high temperature resistance. The main purposes of fabricating 

the ceramic material are to enhance the physical and mechanical properties of the 

materials (Rezwan et al., 2006).  

Kim et al. (2016) prepared porous mullite-based ceramic by utilising coal fly ash 

and Al2O3 powder via a freeze casting method and was sintered at a temperature between 

1300°C to 1500°C. The compressive strength increased with the increase of sintering 

temperature. However, the compressive strength of the porous mullite-based ceramic 

would decrease from 33.1 MPa to 8.1 MPa when the porosity increase from 51.4% to 

78.9%. It can be deduced that the mechanical and physical properties of porous ceramic 

were influenced by various parameters such as sintering temperatures and percentage of 

porosity. On the other hand, the fabrication methods also gave an impact to the properties 

of the porous ceramic. 
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