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eV  Volume fraction (epoxy) 

gV  Volume fraction (glass) 

eG  Shear modulus (epoxy) 

gG  Shear modulus (glass) 

f  Fibre 

m Matrix 

12G  Shear modulus in the 1-2 plane 

12  Poisson ratio in the 1-2 plane 

21  Poisson ratio in the 2-1 plane 

11Q  Stiffness matrices in 1-1 plane 

12Q  Stiffness matrices in 1-2 plane 

16Q  Stiffness matrices in 1-6 plane 

22Q  Stiffness matrices in 2-2 plane 

26Q  Stiffness matrices in 2-6 plane 

66Q  Stiffness matrices in 6-6 plane 

11Q  Transverse stiffness matrices in 1-1 plane 

12Q  Transverse stiffness matrices in 1-2 plane 

16Q  Transverse stiffness matrices in 1-6 plane 

22Q  Transverse stiffness matrices in 2-2 plane 

26Q  Transverse stiffness matrices in 2-6 plane 

66Q  Transverse stiffness matrices in 6-6 plane 

hpxaG  Shear modulus 

hpxa  Poisson ratio 

 Q  Stiffness matrix 

 Q  Transformed stiffness matrix 
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xxi 
 

  arbitrary angle 

P  Pressure applied 

sgID  Inner diameter of the strain gauge 

sgTE  Reinforced wall at the location of the strain gauge 

1iε  Maximum strain at the end of the first cycle of cycle group i 

10iε  Maximum strain at the end of the last cycle of cycle group i 
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xxii 
 

Prestasi paip komposit epoksi bertetulang gentian kaca di bawah 
pelbagai nisbah tegasan, sudut belitan dan kondisi penuaan  

ABSTRAK 
Kaca-kaca komposit yang Diperkukuh Serat Kaca (GRE) mempunyai aplikasi yang lebih 
luas dalam industri minyak dan gas kerana ketahanan dan kekuatan mereka. Program 
kelayakan yang luas diperlukan untuk menentukan prestasi paip yang berkaitan dengan 
tekanan, suhu, rintangan kimia, prestasi kebakaran, prestasi elektrostatik, impak, dan 
pemampatan. ISO 14692 memenuhi syarat paip GRE berdasarkan analisis regresi 
daripada ujian jangka panjang. Prosedur ujian konvensional ini memerlukan 14 bulan 
untuk menganggarkan harta yang tinggal pada akhir hayat yang diharapkan (20-50 tahun). 
Pengeluar paip komposit pasti memerlukan ujian jangka pendek yang lebih cekap dan 
boleh dipercayai. Rig ujian tekanan automatik mudah alih yang baru dibangunkan untuk 
mencapai lima nisbah tekanan multiaxial: paksi tulen 0H:1A, gelung ke paksi 1H:1A, 
hidrostatik tulen 2H:1A, gelung quad ke paksi 4H:1A, dan gelung tulen 1H: 0A loading. 
Rig ujian berfungsi sebagai alternatif kepada prosedur ujian jangka pendek yang sedia 
ada, yang dinyatakan dalam ASTM D2992. Kaedah ujian dibangunkan berdasarkan 
konsep tekanan dinding elastik muktamad (UEWS). Ujian UEWS secara dalaman 
menekan paip-paip, memegang dan melepaskan tekanan berdasarkan set nilai satu 
kitaran. Sepuluh kitaran tersebut membentuk satu kumpulan kitaran pada tahap tekanan 
malar. Prosedur ini diteruskan pada tahap tekanan yang meningkat sehingga paip 
menunjukkan weepage. Program LabVIEW dibangunkan untuk mencapai ujian UEWS 
dan berjalan di Komputer Panel Sentuh. NI compactRIO dan modul NI membaca nilai 
tekanan, mengukur bacaan tolok terikan dan mengawal pembukaan dan penutupan injap 
solenoid. Ukur terikan gelung dan paksi dibeli semasa ujian. Titik kegagalan pertama kali 
dianggarkan dari nilai terikan yang ditangkap. Sampul surat kegagalan dibina 
berdasarkan mata kegagalan pertama. Kesan sudut penggulungan dikaji dengan 
menundukkan paip dengan sudut penggulungan [±45°]4, [±55°]4, dan [±63°]4. Keputusan 
ujian UEWS menunjukkan bahawa setiap sudut penggulungan menguasai nisbah tekanan 
optimum tertentu iaitu [±45°]4 untuk beban yang dikuasai paksi (1H: 1A dan 0H: 1A); 
[±55°]4 cemerlang pada muatan hidrostatik tulen (2H:1A), manakala [±63°]4 
menunjukkan dominasi sepanjang gelung quad untuk nisbah tekanan 4H:1A dan 1H:0A. 
Untuk mengkaji kesan penuaan, paip-paip tersebut adalah hidrothermally berusia dan 
tertakluk kepada ujian UEWS. Hasilnya menunjukkan paip-paip lama memperlihatkan 
kemerosotan kekuatan yang besar berbanding dengan hasil paip dara kerana penyerapan 
kelembapan. Beberapa mod kegagalan iaitu retak matriks melintang, striations putih, 
weepage, pecah serat, pembentukan gelang diperhatikan semasa ujian UEWS. 
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Performance of glass fibre reinforced epoxy (GRE) composite 
pipes under various stress ratios, winding angles and ageing 

conditions 

ABSTRACT 
Glass Fibre Reinforced Epoxy (GRE) composite tubes have wider application in oil and 
gas industry due to their durability and strength. An extensive qualification program is 
required to determine the performance of the pipes concerning pressure, temperature, 
chemical resistance, fire performance, electrostatic performance, impact, and 
compression. ISO 14692 qualifies GRE pipes based on regression analysis from a long-
term test. This conventional test procedure requires 14 months to estimate the remaining 
properties at the end of expected life (20-50 years). The composite pipe manufacturers 
certainly require a more efficient yet reliable short-term test. A new portable automated 
pressure test rig is developed to achieve the five multiaxial stress ratios: pure axial 0H:1A, 
hoop to axial 1H:1A, pure hydrostatic 2H:1A, quad hoop to axial 4H:1A, and pure hoop 
1H: 0A loading. The test rig serves as an alternative to the existing short-term test 
procedure, specified in ASTM D2992. A test method is developed based on the ultimate 
elastic wall stress (UEWS) concept. UEWS test internally pressurises the pipes, holds and 
releases the pressure based on the set value one cycle. Ten such cycles form one cycle 
group at a constant pressure level. The procedure is continued at increased pressure levels 
until the pipe shows weepage. A LabVIEW program is developed to accomplish the 
UEWS test and runs on the Touch Panel Computer. NI compactRIO and NI modules read 
the pressure values, measure strain gauge readings and control the opening and closing 
of the solenoid valves. Hoop and axial strain measurements are acquired during the test. 
First ply failure points are estimated from the captured strain values. The failure envelope 
is constructed based on the first ply failure points. The effects of winding angles are 
studied by subjecting pipes with winding angles [±45°]4, [±55°]4, and [±63°]4. The results 
of the UEWS tests indicate that each winding angle dominate a certain optimum stress 
ratio namely, [±45°]4 for axial dominated loadings (1H:1A and 0H:1A); [±55°]4 excel at 
pure hydrostatic loading (2H:1A), while [±63°]4 show domination along the quad hoop to 
axial 4H:1A and 1H:0A stress ratios. To study the effects of ageing, the pipes are 
hydrothermally aged and are subjected to UEWS tests. The results show for the aged 
pipes show a considerable degradation of strength compared to the results of the virgin 
pipes due to moisture absorption. Several failure modes namely transverse matrix 
cracking, white striations, weepage, fibre breakage, ring formation were observed during 
the UEWS tests.  
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CHAPTER 1 

INTRODUCTION 

1.1 Glass fibre reinforced epoxy composite pipes 

Composite pipes are being intensively studied as replacements for metallic 

pipes, as the metallic piping systems are considered more susceptible to corrosion and 

wear under harsh environments. Glass reinforced epoxy (GRE) pipes are the commonly 

used composite engineering material uniquely capable of meeting a wide variety of end 

product requirements and applications of fluid transport needs. The GRE pipes are 

commonly known by various standards, as Fibre Reinforced Plastics (FRP), GRP, Glass 

Fibre Reinforced Plastic (GFRP), Reinforced Plastic Mortar Pipe (RPMP) or Reinforced 

Thermo-Set Resin Plastic (RTRP). These composite pipes are an amalgamation of resin, 

glass fibre, manufactured using appropriate additives and treatment methods. These 

pipes include exceptionally high strength to weight ratio (have low thicknesses and high 

mechanical properties-with stands high pressures), superior corrosion resistance (no 

scaling and no build up), maintenance free, higher hydraulic efficiency (smaller sizes), 

lightweight (lower transportation and installation costs), higher resistance to surge 

pressure (more safer under worst conditions due to its low modulus of elasticity), best 

joining systems, excellent workability and design flexibility's. Thus, allowing GRE 

piping to be used for high pressures and in very tough and rough conditions.  

GRE piping system is often utilised in almost all applications to withstand 

competitive service, ambient and environmental conditions. It has been successfully 

used in various piping systems and applications over the entire world. Unlike metallic 
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