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AUSTRAl{ 

Tujuan peny.eJidikan ini adaJah untuk memfabrikasi dan mencirikan (eLektrikal dan optikal) filem 
nipis silikon dioksida untuk kegunaan peranti pada saiz nano meter. Dalarn penyeJidikan ini, proses 
pengoksidaan kering menggunakan relau bersuhu tinggi digunakan untuk mengbasilkan tiJem nipis 
oksida. KetebaJan filem nipis ini perlu dibawah 30 Angstroms untuk dijadikan penebat didaJam 
peranti kapasitor MOS. Terdapat tiga takat suhu yang digunakan, iaitu 750, 800 and 850°C. Sampel 
disediakankan pada pengaliran oksigen 0.333 litre/min, 0.667 liter/min and 1.00 liter/min dan 
dengan perubahan masa iaitu 1, 2 and 3 minit. Ketebalan diukur rnenggunakan ellipsometer dan 
sifat pennukaan rnikro dan topografi diperolehi menggunakan alat atomic force microscope (AFM). 
Semua parameter dan data telah di interpritasikan menggunakan teknik Taguchi untuk menganalisa 
faktor-faktor penting daJam penghasilan fiJem nipis silikon ini. MelaJui pengiraan, teknik Taguchi 
boleh digunakan untuk meramal ketebalan untuk setiap kombinasi parameter yang digunakan. 
Keputusan menunjukkan suhu merupakan faktor terpenting yang mempengaruhi pertumbuhan 
oksida Keputusan juga menunjukkan pengaliran oksigen juga tnempengaruhi ketebaJan dan ciri 
permukaan oksida. Pada pengaliran oksigen yang tinggi (1 Vrnin), ketebaJan oksida akan meningkat 
dan pada masa yang sarna permukaan akan menjadi halos. Terdapat juga keputusan CV 
berfrekuensi tinggi dan IV yang teJah dijaJankan untuk mengkaji sifat elektrikal peranti tersebut. 
Keputusan CV menunjukkan terdapatnye perubahan pada voltan jalur lebar (VFB) pada ketiga-tlga 
sampel. Keputusan IV pula menunjukkan kegagalan berlaku pada paras yang lebih rendah iaitu 
IMV/cm. 
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ABSTRACT 

The aim of this research is tofabricate and characterize (optical and electrical) an ultra thin silicon 
dioxide for sub nano devices. In this research, dry oxidation method using high temperature furnace 
is chosen to fabricate a thin layer of oxide below 30Angstroms. There are three level of temperature 
used. that is 7S0, 800 and 8S(/C. The wqfers were grown in 0.333 litre/min. 0,667 liter/min and 
1.00 literlmin oxygen flow rate with variation in growth time 1, 2 and 3 minutes. Thiclcnesses were 
obtained using ellipsometer and the surface topography and were achieved using atomic force 
microscope (UM). Parameters and data has been interpreted using Taguchi 's method. This is to 
analyze the most affectingfactors in producing an ultra thin silicon dioxide. Taguchi 's method were 
able to predict the thiclcness for each combination of parameters. Results show that the temperature 
is the most effecting factor that effects the growth of oxide. Results also show that oxygen flow rates 
do have an influence to the thiclcness and surface properties. A higher amount of flow rate (illmin) 
will increase the oxide thickness and also will create a smooth oxide surface. There are also results 
of a high frequency CV and IV techniques were employed as for the devices electrical 
characterizations. The CV results shows that there is a shift in VFBfor all the wafers and IV shows 
that breakdown occurs at 1 MV!cm. 

xvi 
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CHAPTER 1 

BACKGROUND 

1.1 Introduction 

The electronics industry has grown rapidly in the past three decades. Ultra-large-scale integrated 

(ULSI) circuits, with 108 or more devices on a chip. can now be fabricated on semiconductor 

substrates, or wafers, to reduce cost and to increase the performance of electronic products. Figure 

1.1 shows the growth of the number of components on a metal-oxide-semiconductor (MOS) 

memory chip. This number has approximately doubled every two years over the past two decades, 

matching the rate Moore forecast [Mur, 2001]. Concurrently, the minimum dimension of the 

device-feature continues to shrink by about 13% per year, or by a factor of two every six years, due 

to the advances in fabrication technology. The decrease of feature length reduces the overall device 

size and increases the packing density, and thus reduces the cost of function. Moreover, device 

speed, which varies inversely to feature length, has been improved and power consumption, which 

approximately varies as the square of feature length, has been reduced. On the other hand, the 

complexity of microchip design and fabrication has increased continuously with integration and 

miniaturization [Rusu, 2001]. 
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Figure 1.1: Experimental growth of the number of components per MOS Ie chip (Intel, 2002] 

Integrated circuitry based on metal-oxide-semiconductor field effect transistors (MOSFETs) is the 

dominant technology in the semiconductor industry. At the heart of each of these transistors is a 

gate that controls the flow of electrons through a channel between a source and a drain. The name 

field effect refers to the control of the conductivity within the channel caused by the presence of an 

electric field. Between the gate and the channel is a very thin dielectric, creating capacitor effect. 

Generally, this dielectric is a thennal oxide grown directly on the silicon wafer. This oxide film, 

known as the gate oxide, is critical to the proper functioning of the FET transistor. If there is 
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leakage through the gate oxide, the device draws too much current. If the breakdown voltage is too 

small, the field in the channel is too low and one cannot control the current between the source and 

drain [Hasunuma, 1999]. 

In advanced complementary metal-oxide-semiconductor (CMOS) technology, while moving from 

micro to nanotechnology, the precise control ofthickness and quality of the different layers grown, 

are decisive for the behaviour of the MOS transistor. One of the main issues in microelectronics is 

the growth of ultra-thin oxide on silicon substrates [Sze, 1988]. The ultra-thin gate oxide is a thin 

layer of oxide (usually silicon dioxide) forms the insulating layer between the control gate and the 

conducting channel of the transistors, which turns the current flow on and off. The gate oxide layer, 

in essence, acts as an insulator, protecting the channel from the gate electrode and preventing a 

short circuit [May, 2004}. As circuits are made denser, all of the dimensions of the transistors are 

reducing correspondingly [Mahajan, 1999]; these also mean reducing the thickness of the oxide. 

However reducing the thickness is not an easy solution because there are physical and practical 

limits on how thin an oxide film can be made. There are also factors need to be considered such as 

reliability. direct current tunnelling and oxide breakdown. Figure 1.2 shows the historical trend in 

oxide thickness for high-performance logic applications over the past decade [Sze, ] 988]. 
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Figure 1.2: Historical trends in thi.ckness of Si02 uses as gate insulator in CMOS logic vs. year of 

publication [Sze, 1988]. 

Achieving reliable and high quality thin gate dielectrics requires research and development efforts 

to meet the demands for smaller device geometry and better device performance [Campbell, 2001]. 

1.2 Research Objeetives 

The goal of this project is to fabricate, characterize and optimize electrical and surface morphology 

of ultra-thin silicon gate oxide and alternate gate dielectrics for sub 0.1 J.1m Metal Oxide 

Semiconductor (MOS) devices. 
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1.3 Problems Statement 

Fabricating an ultra-thin silicon dioxide is a difficult task. The target thickness to be considered 

ultra thin is less than 30 A. It must be unifonn across the wafer, wafer to wafer, and from run to run 

[Momose, 1997]. The oxide must be free from defect or any contamination as it would cause 

breakdown at lower electric fields value [Hasunuma, 1999]. The dielectric must also be chemically, 

electrically and thennally stable under the processes for fabricating integrated circuits and 

compatible with other materials used during manufacturing. 

1.4 Research Scope 

The main focus of this research is to be able to fabricate ultra-thin silicon ilioxide. This research 

consists of simulation, design of experiment for fabricating thin oxide using high temperature 

furnace. It include characteristic of silicon oxide such as surface properties, growth rate, 

topography, roughness and refractive index. It also involves in electrical characteristic such as 

resistivity, capacitance-voltage and current voltage results. 

1.5 Thesis Overview 

In chapter 1, it consists of an introduction to the CMOS technology and history trends. It explains 

on why the thin oxide is needed for future technologies. In this chapter, it also describe in detail 

about problem statement, research objectives and the research scope. 

Chapter 2 describe about literature review on silicon dioxide, the structure, the growth techniques, 

factors affecting the oxide and theoretical of MOS capacitors. It also describes the basic of 

fabrication process and measurement process. 

5 
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Chapter 3, describe in detail about the research methodology. It shows the approach used to 

fabricate and characterize an ultra thin silicon dioxide in CMOS capacitor. 

Chapter 4 discuss about the result achieved. This include the surface characteristic such as oxide 

thicknesses obtain by TCAD simulation and by Taguchi's statistical design, the surface roughness 

and the electrical characteristic which is the capacitance voltage and current voltage measurement. 

Chapter 5 presents conclusion of this research and a tist of possible direction for future research. 

6 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

The oxidation of silicon is necessary throughout the modem integrated circuit fabrication process. 

Producing high-quality ICs requires not only an understanding of basic oxidation mechanism, but 

the ability to fonn a high-quality oxide in a controlled and repeatable manner. In addition. to ensure 

the reliability of the ICs. the electrical properties of the oxide must be understood [CSEE. 2007]. 

Silicon dioxide has several uses: to serve as a mask against implant or diffusion of dopant into 

silicon, to provide surface passivity, to isolate one device from another (dielectric isolation as 

opposed to junction isolation). to act as a component in MOS structures. and to provide electrical 

isolation of multilevel metallization systems. Several techniques for fonning the oxide layers have 

been developed. such as thermal oxidation (including rapid thermal techniques). wet anodization, 

vapour-phase technique (chemical vapour deposition). and plasma anodization or oxidation. 

[Campbell, 2001] 

1.1 Silicon Dioxide 

Of all advantages of silicon for the formation of semiconductor devices. the ease of growing of a 

silicon dioxide layer is perhaps the most usefu1. Whenever a silicon surface is exposed to oxygen. it 

is converted to silicon dioxide (Figure 2.1) [Campbe1J. 2001]. Silicon dioxide is composed of one 
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