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Tujuan penyelidikan ini adalah untuk memfabrikasi dan mencirikan (elektrikal dan optikal) filem
nipis silikon dioksida untuk kegunaan peranti pada saiz nano meter. Dalam penyelidikan ini, proses
pengoksidaan kering menggunakan relau bersuhu tinggi digunakan untuk menghasilkan filem nipis
oksida. Ketebalan filem nipis ini perlu dibawah 30 Angstroms untuk dijadikan penebat didalam
peranti kapasitor MOS. Terdapat tiga takat suhu yang digunakan, iaitu 750, 800 and 850°C. Sampel
disediakankan pada pengaliran oksigen 0.333 litre/min, 0.667 liter/min and 1.00 liter/min dan
dengan perubahan masa iaitu |, 2 and 3 minit. Ketebalan diukur menggunakan ellipsometer dan
sifat permukaan mikro dan topografi diperolehi menggunakan alat atomic force mieroscope (AFM).
Semua parameter dan data telah di interpritasikan menggunakan telmikTagup "@tukmengamlisa
faktor-faktor penting dalam penghasilan filem nipis silikon ini. Melalui pné%n teknik Taguchi
boleh digunakan untuk meramal ketebalan untuk setiap kombinasi i
Keputusan menunjukkan suhu merupakan faktor terpenting yang
oksida. Keputusan juga menunjukkan pengaliran oksigen juga
permukaan oksida. Pada pengaliran oksigen yang tinggi (1 I/min
dan pada masa yang sama permukaan akan menjadi Terdapat juga keputusan CV
berfrekuensi tinggi dan IV yang telah dijalankan untuk ji sifat elektrikal peranti tersebut,
Keputusan CV menunjukkan terdapatnye perubahan padavoltan jalur lebar (Vi) pada ketiga-tiga
!]i:l{ivprl. Keputusan IV pula menunjukkan kegagalan berlaku pada paras yang lebih rendah iaitu

om.




The aim of this research is to fabricate and characterize (optical and electrical) an ultra thin silicon
dioxide for sub nano devices. In this research, dry oxidation method using high temperature furnace
is chosen to fabricate a thin layer of oxide below 30Angstroms. There are three level of temperature
used, that is 750, 800 and 850°C. The wafers were grown in 0.333 litre/min, 0.667 liter/min and
1.00 liter/min oxygen flow rate with variation in growth time 1, 2 and 3 minutes. Thicknesses were
obtained using ellipsometer and the surface topography and were achieved using atomic force
microscope (AFM). Parameters and data has been interpreted using Taguchi's method. This is to
analyze the most affecting factors in producing an ultra thin silicon dioxide. T 's method were
able to predict the thickness for each combination of parameters. Results show the temperature
is the most effecting factor that effects the growth of oxide. Results also show, flow rates
do have an influence to the thickness and surface properties. A higher am, of flow rate (1 Vmin)
will increase the oxide thickness and also will create a smooth oxide s . There are also results
of a high frequency CV and IV techniques were em as for the devices electrical
characterizations. The CV results shows that there is a shift in V, all the wafers and IV shows

that breakdown occurs at 1 MV/cm. . \~Q
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CHAPTER 1

BACKGROUND

&

.{\
1.1 Introduction Q*

The electronics industry has grown rapidly in the past three. {&a Ultra-large-scale integrated
(ULSI) circuits, with 10* or more devices on a chip, @ w be fabricated on semiconductor
substrates, or wafers, to reduce cost and to inc ormance of electronic products, Figure
1.1 shows the growth of the number of q@onems on a metal-oxide-semiconductor (MOS)
memory chip. This number has appmx&)@(l; doubled every two years over the past two decades,
matching the rate Moore fomg@ur, 2001]. Concurrently, the minimum dimension of the
dewce—fmurecommes:o@byabout 13% per year, or by a factor of two every six years, due
to the advances in fabﬁéhon technology. The decrease of feature length reduces the overall device
size and mcrea;%@:) packing density, and thus reduces the cost of function. Moreover, device
speed, whichylries inversely to feature length, has been improved and power consumption, which
approximately varies as the square of feature length, has been reduced. On the other hand, the
complexity of microchip design and fabrication has increased continuously with integration and

miniaturization [Rusu, 2001},
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Figure 1. ,i&\EQ’@'n\memnl growth of the number of components per MOS IC chip [Intel, 2002]
msl'ﬂlbg@cmmtry based on metal-oxide-semiconductor field effect transistors (MOSFETS) is the
dominant technology in the semiconductor industry. At the heart of each of these transistors is a
mﬂmmﬂsﬂwﬂowofclmmﬂ\rm@ladumel between a source and a drain. The name
field effect refers to the control of the conductivity within the channel caused by the presence of an
electric field. Between the gate and the channel is a very thin dielectric, creating capacitor effect.
Generally, this dielectric is a thermal oxide grown directly on the silicon wafer. This oxide film,
known as the gate oxide, is critical to the proper functioning of the FET transistor. If there is



leakage through the gate oxide, the device draws too much current. If the breakdown voltage is too

small, the field in the channel is too low and one cannot control the current between the source and

drain [Hasunuma, 1999].

In advanced complementary metal-oxide-semiconductor (CMOS) technology, while moving from
micro to nanotechnology, the precise control of thickness and quality of the diﬁ'\'erent layers grown,
are decisive for the behaviour of the MOS transistor. One of the main ism\sqg§ microelectronics is
the growth of ultra-thin oxide on silicon substrates [Sze, 1988]. 'rhe@}w.in gate oxide is a thin
layer of oxide (usually silicon dioxide) forms the insulating la Oween the control gate and the
conducting channel of the transistors, which turns the oL ow on and off. The gate oxide layer,
in essence, acts as an insulator, protecting the char@ﬁ\ﬁom the gate electrode and preventing a
short circuit [May, 2004]. As circuits are , all of the dimensions of the transistors are
reducing correspondingly [Mahajan, 198gﬂme also mean reducing the thickness of the oxide.
However reducing the thickness 1 an easy solution because there are physical and practical
lnmmonhowmmmox,de@)&mbemde There are also factors need to be considered such as
reliability, direct cm@nellmg and oxide breakdown. Figure 1.2 shows the historical trend in
oxide thickness .ﬁg@vperformance logic applications over the past decade [Sze, 1988].
N
©
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Figure 1.2: Historical trends in thickness of i&i as gate insulator in CMOS logic vs. year of
pua@ﬁon [Sze, 1988).
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KO
Achieving reliable and high a)&y thin gate dielectrics requires research and development efforts
N\

to meet the demands for@uer device geometry and better device performance [Campbell, 2001].

x<

N\

NG

1.2 Research Objectives

The goal of this project is to fabricate, characterize and optimize electrical and surface morphology
of ultra-thin silicon gate oxide and altenate gate dielectrics for sub 0.Ipm Metal Oxide

Semiconductor (MOS) devices.



1.3 Problems Statement

Fabricating an ultra-thin silicon dioxide is a difficult task. The target thickness to be considered
ultra thin is less than 30 A. It must be uniform across the wafer, wafer to wafer, and from run to run
[Momose, 1997]. The oxide must be free from defect or any contamination as it would cause
breakdown at lower electric fields value [Hasunuma, 1999]. The dielectric must also be chemically,
electrically and thermally stable under the processes for fabricating. égawd circuits and

N\
compatible with other materials used during manufacturing, Q&
\&
(e
1.4 Research Scope \Q
O’\Qo

The main focus of this research is to be nblebmicate ultra-thin silicon dioxide. This research
consists of simulation, design of em'g& for fabricating thin oxide using high temperature

furnace. It include chancteristicégéilicon oxide such as surface properties, growth rate,

N
topography, roughness and {%ﬁane index. It also involves in electrical characteristic such as

resistivity, capacimme-v@gn and current voltage results.
X<
N\

%
1.5 Thesis Gvetview
©

In chapter 1, it consists of an introduction to the CMOS technology and history trends. It explains
on why the thin oxide is needed for future technologies. In this chapter, it also describe in detail

about problem statement, research objectives and the research scope.

Chapter 2 describe about literature review on silicon dioxide, the structure, the growth techniques,
ﬁlctm'saffectingﬁ;eoxidemdﬁmticalofMOScamcim It also describes the basic of

fabrication process and measurement process.



Chapter 3, describe in detail about the research methodology. It shows the approach used to

fabricate and characterize an ultra thin silicon dioxide in CMOS capacitor.

Chapter 4 discuss about the result achieved. This include the surface characteristic such as oxide
thicknesses obtain by TCAD simulation and by Taguchi’s statistical design, the surface roughness

and the electrical characteristic which is the capacitance voltage and current vol,t{gc measurement.

O
Chapter 5 presents conclusion of this research and a list of possible dé@n for future research.
>
LoD
O
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction K\Qo

R

The oxidation of silicon is necessary throughout the modern m\(&ﬁl@d circuit fabrication process.
Producing high-quality ICs requires not only an unders of basic oxidation mechanism, but
the ability to form a high-quality oxide in a control Ie&d repeatable manner. In addition, to ensure
the reliability of the ICs, the electrical pmpeng\ﬁthe oxide must be understood [CSEE, 2007].

xQ

@)
Silicon dioxide has several utleei:K e as a mask against implant or diffusion of dopant into
silicon, to provide surface. wﬁity, to isolate one device from another (dielectric isolation as
opposed to junction u@'n), to act as a component in MOS structures, and to provide electrical
isolation of mulhb;}l metallization systems. Several techniques for forming the oxide layers have
been devel such as thermal oxidation (including rapid thermal techniques), wet anodization,
vapour technique (chemical vapour deposition), and plasma anodization or oxidation.

[Campbell, 2001]
2.2 Silicon Dioxide
Of all advantages of silicon for the formation of semiconductor devices, the ease of growing of a

silicon dioxide layer is perhaps the most useful. Whenever a silicon surface is exposed to oxygen, it

is converted to silicon dioxide (Figure 2.1) [Campbell, 2001). Silicon dioxide is composed of one



