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Analisa Pelesapan Haba Diod Pancaran Cahaya Kuasa Tinggi Melalui Slug Dan 
Penenggelam Haba 

ABSTRAK 

Diod pancaran cahaya kuasa tinggi (LED), menarik perhatian pada masa kini kerana 
kesannya yang memberansangkan kepada industri lampu dari segi keberkesanan, 
penggunaan tenaga yang rendah, jangka hayat yang panjang dan saiz fizikal yang kecil. 
Walau bagaimanapun, suhu simpang diod pancaran cahaya yang tinggi terus menjadi 
isu utama dalam industri diod pancaran cahaya kerana ia ketara mempengaruhi 
kebolehpercayaan dan kecekapan diod pancaran cahaya tersebut. Dalam kajian ini, 
pelesapan haba pakej diod pancaran cahaya yang bercip tunggal dinilai dan dianalisis 
melalui simulasi. Tumpuan utama kajian ini diletakkan di atas slug haba pakej LED 
dan kesannya terhadap cip LED dari segi suhu simpang, tekanan Von Mises dan 
rintangan haba. Penilaian perubahan slug haba telah dilakukan dari segi saiz, bahan 
slug dan bentuk slug . Di samping itu, kesan reka bentuk penenggelam haba dari segi 
bilangan sirip dan pengaruh ke atas suhu simpang diod pancaran cahaya juga disiasat. 
Kajian ini telah dijalankan dengan menggunakan ANSYS versi 11. Untuk bahagian 
pertama kajian, analisa perubahan slug haba yang telah dilakukan. Cip tunggal pakej 
diod pancaran cahaya telah kuasakan dengan kuasa input dari 0.1 W hingga ke I W. 
Dua jenis bentuk slug haba; segi empat tepat dan silinder dengan dimensi yang 
berbeza-beza telah digunakan bagi analisi ini. Tiga jenis bahan slug haba, aluminium, 
tembaga dan tembaga berlian telah digunakan dan pelesapan haba telah dibandingkan. 
Simulasi telah dijalankan di bawah empat jenis keadaan pengaliran; keadaan olakan 
semulajadi, h = 5 W/m2C dan tiga keadaan olakan paksa, h = 10 W/m2C, IS W/m2C 
dan 20 W/m2C. Dalam bahagian kedua kajian ini, analisa perubahan bilang sirip 
penenggelam haba telah dilakukan. Cip tunggal pakej diod pancaran cahaya telah 
diubah dengan penenggelam haba yang berbeza reka bentuk dari segi bilangan sirip 
yang terdiri daripada empat sirip hingga ke 20 sirip. Penemuan utama analisa 
perubahan slug haba dari segi bentuk slug haba, saiz dan jenis bahan slug haba pada 
kuasa input I W menunjukkan bahawa pakej LED dengan slug haba tembaga berlian 
berbentuk segiempat berukuran I = 5 mm, w = 5 mm h = 1 mm di bawah keadaan 

2 . , ' . 
olakan paksa h = 20 W/m C mempamerkan prestasJ terma yang terba1k dengan suhu 
simpang 56.01 oc dengan pengurangan ketara 53.10 % dari segi suhu simpang. Di 
samping itu, analisa perubahan bilang sirip penenggelam haba menunjukkan bahawa 
pakej LED dengan slug haba tembaga berlian berbentuk segiempat berukuran I = 5 
mm, w = 5 mm, h = 1 mm, di bawah keadaan olakan paksa, h = 20 W/m2C dengan 
penenggelam haba bersirip 20 mempamerkan prestasi terma yang terbaik dengan suhu 
simpang 44.84 oc dengan pengurangan ketara 19.94 % dari segi suhu simpang. 
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High Power LEO Thermal Dissipation Analysis Via Slug And Heat Sink 

ABSTRACT 

High power light emitting diode (LED), are captivating attention in recent times due to 
its cogent impacts on lighting industry in terms of efficacy, low power consumption, 
long lifetime and miniature physical size. However, the high junction temperature of 
the high power light emitting diodes continues to be a key issue in the LED industry as 
it significantly influences the reliability and efficiency of the LED. In this research, the 
thermal dissipation of a single chip high power light emitting diode package were 
evaluated and analyzed through simulation. The prime focus of this research is placed 
on the heat slug of the LED package and its effect on the LED chip in terms of junction 
temperature, Von Mises stress and thermal resistances. The variation of the heat slug 
was done in terms of size, slug material and shape. In addition, the effect of heat sink 
design in terms of fin numbers and its influence on the junction temperature of the LED 
was also investigated. The research was carried out using Ansys version 11. For the 
first part of the research, the heat slug variation analysis was done. The single chip 
LED package was powered with input power ranging from 0.1 W to 1 W. Two types of 
heat slug shape; rectangular and cylindrical with varied dimension were used . Three 
types of heat slug material, aluminum, copper and copper diamond was used and the 
heat dissipation was compared. The simulation was carried out under four types of 
conduction condition; natural convection condition, h = 5 W /m2C and three forced 
convection condition,h = 10 W/m2C, 15 W/m2C and 20 W/m2C respectively. In the 
second part of this research, heat sink fin number variation analysis was done. The 
single chip LED package was varied by different heat sink design in terms of fin 
numbers ranging from four fins to 20 fins. The key findings of heat slug variation 
analysis in terms of heat slug shape, size and material at input power of 1 W showed 
that the LED package with 1 = 5 rnm, w = 5 nun, h = 1 mm rectangular copper diamond 
composite heat slug, under forced convection condition of h = 20 W/m2C exhibited the 
best thermal performance with junction temperature of 56.01 °C with significant 
reduction of 53.10 % in terms of junction temperature. In addition, the heat sink fin 
number analysis showed that the LED package with 1 = 5 mm, w = 5 mm, h = 1 mm 
rectangular copper diamond composite heat slug, under forced convection condition, 
h = 20 W/m2C with 20 fm heat sink exhibited the best thermal performance with 
junction temperature of 44.84 °C with significant reduction of 19.94 % in terms of 
junction temperature. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview ofLEDs 

Light Emitting Diode (LED) is an innovation which utilizes semiconductor 

materials to emit light. The discovery of light emitting semiconductor materials dates 

back to the last century. Silicon Carbide (SiC) was synthesized by Jon Jacob Berzelius 

in 1824 (Heathcote, 2011 ). The first observation of electroluminescene was reported by 

Henry Joseph Round in 1907 where evaluation of Carborundum and its application as 

crystal detector radios was done. Round noticed that SiC crystalline emitted light when 

applied with input current of 10 volts and 100 volts (Round, 1907). In 1928, a detailed 

inquisition on luminescence phenomenon was reported by Oleg Vladimirovich Lossev. 

SiC rectifiers were used by (Lossev, 1928) and a series of experiment were done. 

Lossev found that luminescence occurred and it could be switched on and off rapidly, 

making it suitable application as light relay and hence, the very first LED was born and 

ever since then, the LEDs have undergone tremendous evolution and its journey is 

summarized in Table 1.1 (Schubert, 2006). 

There are two types of LEOs, namely low power LED package (indicator) and 

high power LED package (illuminator) which is illustrated in Figure 1.1. The low power 

package is identified as 5mm LEOs (Schubert, 2006). The structure of the low power 

LED package comprises of a die which is bonded to a reflector cup in the cathode lead 

wire. The LED top contact is connected to the anode lead wire through a bond wire and 

is covered with hemispherical shaped 
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Table 1.1: Historical summary oflight emitting diodes (Schubert, 2006) 

Year Significant Discoveries 
1824 Silicon Carbide (SiC) was ~nthesized by Jon Jacob Berzelius. 
1907 First observation of electroluminescence through evaluation of Carborundum 

and application as crystal detector was reported by Henry Joseph Round. 
1928 The first SiC LED was invented by Oleg Vladimirovich Lossev. 
1957 The first infrared ( 870- 980 nm) LEOs based on gallium arsenide(GaAs) was 

reported by Radio Corporation of America. 
1962 The first practical visible-spectrum LEOs based on GaAsP was developed by 

Nick Holonyak Jr. 
1967 The first visible spectrum with red emission LEOs based on AIGaAs was 

invented by IBM. 
1968 First mass production oflow cost GaAsP LEOs was done by Monsanto 

Corporation. 
1971 The emission of red, orange, yellow and green wavelength range based on 

GaAsP was deveiC>f>ed ~Monsanto Corporation. 
1971 First observation of blue electroluminescence 475 nm based on GaN was 

reported by Radio Corporation of America. 
1972 Blue and violet emission centered at 430 nm was reported by Radio 

Corporation of America. 
1989 Initiation of the AIGalnP based LEOs development. 

1992 First GaN p-n homojunction LED with ultraviolet (UV) and blue emission 
with efficienc_y of I% was reported by Isamu Akasaki 

1993 First blue and green GalnN double heterostructure LED was developed by 
Nichia Chemica11ndustries Co~P_oration. 

1997 Invention of blue laser diode was r(j)orted by Nakamura 
2000 White LEOs based on phosphor wavelength converters was reported by 

Nakamura. 

encapsulant (Schubert, 2006). The low power LED packages are generally utilized for 

low power application such as indicators in calculators, watches, traffic lights and 

signals. The amount of heat produced from these low power LEOs are very minimal 

(Arik, Petroski, & Weaver, 2002). On the other hand, the high power LED package has 

an Aluminum or Copper heat sink slug and the LED submount is soldered with a metal 

based solder. The chip of the high power LED package is encapsulated with silicone. 

Above that, the silicon encapsulant is covered with a tense made out of plastic. Finally, 

the chip is mounted directly on Si submount (Schubert, 2006). The advantages of the 

high power LED package is that it has direct thermal conductive path which initiates 
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to the convectional fluorescent, incandescent lights and other traditional light sources 

(Lafont, Zeijl, & Zwaag, 2012). In general, the luminous efficacy of light source is 

measured in lumens per watt (I m/W) and this describes the efficacy of the light source. 

The theoretically achievable maximum efficacy at 555 nm is 683 lm/W with 100% 

input power conversion to light (Happek, 2009). At present the preeminent efficiency of 

high-power white LED is claimed by Cree Inc with a luminous efficacy of200 lm/W at 

input power l Wand ambient temperature of 25°C (Cree Inc, 20 12a). 

1.2 Problem Statement 

The LED structure generally consists of p-type and n-type semiconductor 

material which creates the existence of a p-n junction. When input power is applied to 

the LED, electroluminescence effect take place at the p-n junction and energy is 

released as light. This is known as light emission process. Nevertheless, the transition 

from low power LED package to high power LED package has also significantly 

increased the input power as well to augment the light output which simultaneously 

increases the heat generation within the package. In high power LEDs, only 20% of the 

input power is emitted as light and the remaining 80% is converted as heat (Cheng, Luo, 

Huang, & Liu, 2010). The heat generated by the high power LED chip is very large 

when compared with conventional light sources. The amount of heat generated by the 

chip is also influenced by the heat dissipation path within the LED package structure 

(Cheng, Luo, Huang, & Liu, 2010). Hence, the heat generated at the p-n junction of 

LEDs is termed as junction temperature. The junction temperature of LED is very 

significant as the performance characteristic such as overall life time and luminous 

efficacy is extremely influenced by it (Jayasinghe, Gu, & Narendran, 2006 ; Gao et al., 
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2008 ; Senawiratne, 2008). A high operating junction temperature results in 

augmentation of non-radiation recombination in LED and the quantum efficiency will 

reduce (Liu, Tam, Wong, & Filip, 2009). In addition, increase in junction temperature 

will result in lumen degradation, augmentation in parasitic series resistance, short 

circuit, decrease of the forward voltage, reduced light output, wavelength and color 

changes (Lafont, Zeij I, & Zwaag, 20 12). Figure 1.2 exhibits the relative flux versus 

junction temperature from the Cree XLamp XB-D LED data sheet (Cree Inc, 20 12b). [t 

is observed that the luminous flux of the LED decreases with augmentation of junction 

temperature. 
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Figure 1.2: XLamp XB-D relative flux vs. steady-state junction temperature 
(Cree Inc, 2012b) 

Furthermore, mechanical stress is induced within the LED packages due to the 

extensive junction temperature of the LED chip which reduces the reliability of the LED 

packages. The reliability of any LED is a direct function of junction temperature. The 

higher the junction temperature, the shorter will the lifetime of the LED is. Failures 

issue which are associated with high junction temperature and mechanical stress are 

electromigration, carbonization of encapsulant, encapsulant yellowing, phosphor 
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thermal quenching, lens cracking ,delamination of layers within the LED structure and 

packaging (Lafont, Zeijl, & Zwaag, 2012). Hence, the excessive heat generated by high 

power LEOs directly affects the overall performances of the LED. Therefore, thermal 

management of LEOs is a main issue which needs to be address in order to fully utilize 

its potential as a prime lighting source in the near future. 

1.3 Research Objectives 

The main objective of this project is to evaluate and characterize the heat 

dissipation and thermal stress of a single chip high power light emitting diode package 

through simulation. The prime focus is placed on the heat slug of the LED package and 

its effect on the LED chip in terms of junction temperature, Von Mises stress and 

thermal resistances. In this research, Ansys version 11 was used to perform the analysis. 

In order to achieve the main objective the sub objective detailed below needs to be 

addressed: 

i) To study the fundamental operation and identify the critical parameters of 

packaged high power light emitting diodes. 

ii) To design 30 model resembling a light emitting diode package with heat sink 

for the simulation analysis. 

iii) To study the relationship between heat slug and its influence on the junction 

temperature ofthe LED. 

iv) To assess additional way to reduce the operating junction temperature of the 

LED. 
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1.4 Research Scope 

The scope of this research covers the subject of evaluation and characterization 

of the heat dissipation and thermal stress of a single chip high power light emitting 

diode package through simulation. The focus of this research is placed on the heat slug 

of the LED package and its effect on the junction temperature of LED package in terms 

ofheat dissipation and thermal stress. The research was done accordingly as: 

i) Rectangular and cylindrical shape heat slug were used to investigate the heat 

dissipation and thermal stress of the single chip LED package. 

ii) The heat slug size was varied from 1 mm x 1 mm to 5 mm x 5 mm for 

rectangular slug with thickness of I mm. As for the cylindrial shape heat slug, 

the diameter was varied from I mm to 5 mm diameter with thickness of 1 mm. 

iii) Three types of heat slug material , Aluminum, Copper and Copper Diamond 

composite were used and results were compared. 

iv) The input powers used for the single chip LED are from 0.1 W to I W with 

increment of 0.1 W for each simulation run. 

v) The simulation was done under four types of convection condition: one natural 

convection condition and three forced convection condition. 

vi) The evaluated junction temperature was used as an input to evaluate the thermal 

stress of LED die. 

vii) For the first part of the simulation, the heat sink design was kept constant with 

four fins. 

viii) After determining the best heat slug size for tower junction temperature thermal 

stress and low thermal resistance, the second part of the simulation was done 
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