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A hibrid reka bentuk algoritma kawalan baru dan simulasi untuk longitud 
dan latitud pergerakan penstabilan tak linear sayap tetap UAV 

 
 

ABSTRAK 
 
 
 UAV (tanpa pemandu Kenderaan Aerial) telah membolehkan beberapa 
keupayaan misi baru dan sering digunakan dalam pelbagai aplikasi. Terdapat beberapa 
jenis konfigurasi UAV yang terdapat di pasaran, tetapi menetapkan sayap UAV adalah 
yang paling popular di kalangan mereka. Ia kebanyakannya digunakan dalam 
pengawasan dan menyelamat jenis permohonan oleh tentera dan juga organisasi 
perniagaan .This membuat reka bentuk dan mengawal UAV sebagai salah satu subjek 
yang paling berdesir untuk penyelidik. Aku janji menyusahkan untuk para saintis dalam 
reka bentuk UAV adalah untuk membangunkan algoritma kawalan yang cekap yang 
menjadikan keliling penerbangan UAV di bawah keadaan biasa dan tidak stabil atau 
jengkel. 
 Seperti UAV lain, UAV menetapkan sayap juga linear bukan dalam alam dan 
penstabilan semasa penerbangan adalah tugas yang menyusahkan. Ia mempunyai dua 
mazhab utama yang, pergerakan membujur dan sisi, yang mesti menjadi kawalan secara 
sah untuk membuat Fix Wing UAV penerbangan stabil. Terdapat beberapa teknik 
kawalan yang sedia yang digunakan untuk mengawal pergerakan penerbangannya. 
Teknik-teknik kawalan diakses mempunyai beberapa pro dan kontra, dan mempunyai 
halangan kerja mereka sendiri. Ini tawaran penerokaan penyelidikan dengan mereka 
bentuk sistem kawalan untuk saiz kecil sayap tetap UAV untuk meningkatkan prestasi 
penerbangan di bawah keadaan ketidaktentuan. Secara umumnya UAV ini wajah 
masalah unpredicted semasa penerbangan seperti tiupan angin berat, mengubah dalam 
perjalanan semasa angin, sensor kekecohan atau sensor bunyi. Ini kesan boleh terapung 
UAV daripadanya dicari arahan dan menjadikannya tidak stabil. Teknik-teknik kawalan 
tradisional didapati tidak cukup mantap untuk mengendalikan keadaan resah. Dalam 
tesis ini algoritma kawalan hibrid baru dibentangkan untuk pergerakan membujur dan 
sisi pengawalan kecil sayap tetap UAV. Teknik kawalan yang dicadangkan 
dibangunkan dengan menyertai algoritma PID dengan algoritma PD-LQG untuk 
menstabilkan sayap tetap penerbangan UAV yang kecil di bawah sensor keadaan bising 
dan keadaan gangguan luar. Untuk mengesahkan pelaksanaan strategi kawalan yang 
dicadangkan adalah simulasi pada 'kayu pengukur' jenis kecil UAV sayap tetap. 
Simulasi yang dilakukan dan dianalisis keadaan yang berangin dan bising berbeza. 
MATLAB Simulink dengan set blok Aerosim yang digunakan untuk melaksanakan 
semua penyelakuan. Keputusan simulasi menunjukkan bahawa teknik kawalan yang 
dicadangkan menunjukkan prestasi yang baik dalam keadaan yang risau dan prestasinya 
adalah lebih baik daripada algoritma tradisional boleh didapati di bawah syarat-syarat 
yang tidak menentu. 
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A new hybrid control algorithm design and simulated for longitude and 
latitude movements stabilization of nonlinear fixed-wing UAV 

 

ABSTRACT 
 

UAVs (Unmanned Aerial Vehicles) have enabled a number of new mission 
capabilities and are frequently used in many applications. There are a few sorts of 
UAVs configuration available in the market, but fix-wing UAVs is the most popular 
among them. It is mostly used in surveillance and rescue type applications by militaries 
as well as business organizations .This makes UAV design and controlling as one of the 
most sizzling subject for the researchers. The troublesome undertaking for the scientists 
in UAVs design is to develop its efficient control algorithm which makes UAV flight 
settle under typical and instability or irritated conditions. 

Like other UAVs, fix-wing UAVs are also non linear in nature and its 
stabilization during flight is troublesome task. It has two major movements that are, 
longitudinal and lateral movement, which must be control legitimately to make Fix 
Wing UAV flight stable. There are several control techniques available that are used to 
control its flight movements. These accessible control techniques have a few pros and 
cons, and have their own working impediments. This research exploration deals with the 
designing of control system for small size fixed-wing UAV to enhance the flight 
performance under uncertainties condition. Generally these UAV countenances 
unpredicted problems during flight such as, heavy wind gust, alter in wind current 
course, sensors commotions or sensors noises. These impacts may float the UAV from 
it sought direction and makes it unstable. The available traditional control techniques 
are not robust enough to handle these perturbed circumstances. In this thesis a new 
hybrid control algorithm is presented for longitudinal and lateral movements controlling 
of small fixed-wing UAV. The proposed control technique is developed by joining the 
PID algorithm with PD-LQG algorithm to stabilize the small fixed-wing UAV flight 
under sensor noisy conditions and external disturbance circumstance. For verifying the 
performance of proposed control strategy it is simulated on ‘Yardstick’ type small fixed 
wing UAV. The simulation are performed and analyzed under different windy and noisy 
conditions. MATLAB Simulink with its Aerosim block set is used to execute all the 
simulation. The simulation results demonstrates that the proposed control technique 
performed exceptionally well under perturbed conditions and its performance is much 
better than available traditional algorithms under uncertainty conditions. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Overview 

 

Fixed Wing Unmanned Aerial Vehicles (UAVs) are considered as replacement of 

manned aircrafts for decades during military mission. Normally a general mission of UAVs 

are characterized by the pre-programming of navigation requirment for close observation of 

targeted mission. UAVs have recently been used with great success for military intelligence 

by providing a viable alternative to manned aircraft due to their smaller size, reduced risk to 

life and reduced cost (Sun, Y. P. 2013). Armed Forces use UAVs in applications such as 

border patrolling, security intelligence, surveillance and target acquisition mission (Haddal, 

C. C. 2010).  Besides military applications of UAVs, it can also be used in many civil 

applications such as search & rescue missions, explorations, security & surveying of 

exposed pipe lines, fire forests, agricultural applications and power & nuclear plants 

inspection (Briant, C. L. 2013). There are many types of UAV including single rotor, quad 

rotor, fixed wing and hybrid types.  However, fixed-wing UAV is more popular because of 

its simple shape and dynamics and its similarity with general airplane (Hefler, C. 2013). 

Fixed-wing UAV is preferable choice as compared to others because it requires less power 

and most of them use only single thruster for flying purpose. (Smit, S. J. A. 2013).  
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There are lots of military and general purposes UAVs available in the market like 

AeroSonde, Aladin, CyroWing, Luna, Luna NG etc. These UAVs are difficult to stabilize 

under uncertainty conditions; especially flight during heavy wind, external disturbance and 

sensor noise feedback.  These uncertainties make them unstable and very difficult to 

control. The purpose of this research is to design a new PID and PD-LQG based hybrid 

control algorithm design that can work more efficiently in adverse environmental 

conditions.  

 

The fixed-wing UAV is a six degree of freedom (DOF) system and its dynamics can 

be categorized into longitudinal and lateral dynamics (Lee, J., & Chung, J. 2013). The 

fixed-wing UAV is nonlinear in nature and it requires a rigid controller for stability during 

takeoff, landing and steady flight (Castañeda, H. 2014). This thesis focuses on the design 

and development of new hybrid algorithm for longitude and latitude stabilization by 

combining two famous control algorithms which are PID and LQG. The proposed hybrid 

controller, PID-PD-LQG, is implemented and simulated on small fixed-wing UAV under 

noisy and windy conditions. The simulation results show the performance of proposed 

algorithm and it shows very good response as compared to previous available algorithms. 

           

1.2 Problem Statement 

  

Fixed-Wing UAV structures are simple to design, but difficult to control due its non-

linear nature. The longitude and latitude control of these fixed-wing UAV play a critical 

role in smooth flight. In real time applications these vehicles have to go through immensely 

harsh conditions. So, for smooth and stable flight of fixed-wing UAV, it is nessary to 
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design an appropiate longitunal and latitudinal control. Most of the control techniques are 

closed loop system and uses sensors to get feedback of applied input response or system’s 

output. It sould be noted that the control technique relies only on the sensors feedbacks and 

sensors are always noisy and the noise level depends on the environmental conditions. 

These noisy feedbacks can cause of error in the UAVs stability. The second major cause of 

error in UAVs stability is external disturbance. In UAVs the external disturbance is denoted 

as windy environment. Such winds can also destabilize the UAVs. To avoid or minimize 

the effect of noise and disturbance in the UAV, the control technique should be powerful 

and effective to make UAV system stable. 

 

1.3 Significance of the study 

  

The results and analysis of this research investigation will be used in improving the 

quality of fixed wing UAV flying and resolve the issues by incorporating fully autonomous 

fixed-wing UAV during its longitudinal and lateral motions under perturbed condition and 

false sensor measurements. Beside, these results would also be beneficial for other 

researchers who are working in the same field. 

 

1.4 Research Objectives 

           

The purpose of the research is to develop an efficient robust control design for 

longitudinal and latitudinal motion of fixed-wing under various uncertainties acting on the 

system. The researched technique used to develop control design can collectively react 
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efficiently to uncertainties acting on the system. Following are the objectives of this 

research. 

i. To develop a mathematical model of fixed-wing UAV 

 

Developing a mathematical model of small fixed-wing UAV is a demanding task. In 

this research to develop a mathematical model a small fixed wing UAV is considered. 

There are several methods to develop the mathematical model of fixed-wing. This research 

works follows Newton Euler method to extract the fixed-wing equations of motion.  

 

ii. To implement and analyze PID, LQR and PD-LQR control algorithms on longitude 

and latitude stabilization of fixed-wing UAV 

 

The fixed-wing UAV experiences several challenges while flying, especially false 

sensor measurements can make fixed-wing UAV unstable. Air turbulence can affect the 

flight of fixed-wing UAV by suddenly drifting its position from its desire trajectory. The 

control algorithms such as PID, LQR and PD-LQR are implemented and to analyze the 

response of fixed-wing UAV under uncertainty conditions that can act on fixed-wing in real 

time. 

 

iii. To develop a new hybrid controller design for nonlinear fixed-wing UAV 

 

On the basis of these analytical results a new hybrid control technique i.e. PID-PD-LQR 

is developed for an efficient response of longitudinal and lateral-directional motion of 

fixed-wing UAV under air turbulence and false sensor data measurements.  
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