

Contaminants' Immobilisation of Incinerated Air Pollution Control Residue and Rubber Sludge Using Respectively Calcium Aluminate Cement and Ordinary Portland Cement With Rice Husk Ash Via Latif Bin Abdul Rani (1141210674) Stabilisation/Solidification Technique

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Environmental Engineering UNIVERSITI MALAYSIA PERLIS

2014

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS
Author's full name	Abdul Latif Bin Abdul Rani
Date of birth	22 / 3 / 1984
Title	Contaminant's Immobilisation of Incinerated Air Pollution Control Residue and
Hue	Rubber Sludge Using Respectively Calcium Aluminate Cement and Ordinary
	Portland Cement With Rice Husk Ash Via Stabilisation/Solidification Technique
Academic Session	2014
-	thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed This thesis is classified as :
	. (Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
X OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
• •	ission to the UniMAP to reproduce this thesis in whole or in part for the purpose of change only (except during a period of years, if so requested above). Certified by:
SIGNAT	URE SIGNATURE OF SUPERVISOR
840322 -	02 - 5115
(NEW IC NO. / F	PASSPORT NO.) NAME OF SUPERVISOR
Date :	Date :

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

DEDICATION

To dearest Muhammad and Madinah Allah's greatest gift

o this item is protected by original conviet

ACKNOWLEDGEMENT

In the name of ALLAH, the most Beneficent, and the most Merciful, I would like to praise ALLAH the Almighty for giving me strength, courage and opportunity to complete this thesis. The truth is, without Him I'm not able to complete this task completely.

This appreciation goes to my current supervisor at Universiti Malaysia Perlis (UniMAP), Dr. Tengku Nuraiti and also to my previous supervisor at University College London (UCL), Dr. Julia Anna Stegemann, for their guidance and commitment throughout this study.

Truly from my heart, I would like to thank my beloved mother, Saariah Mohd Ariffin, my supporting father, Abdul Rani Abdullah for your continuous love and pray. My thanks also goes to my sisters, Syairah Liana, Nur Iman, Shafiah Mahirah, Rafiah and also to my younger brother, Umar Yunus, thank you for always supporting me.

Exclusively to my lovely wife, Najihah Binti Abdul Rashid, my son, Muhammad Bin Abdul Latif, and my daughter, Madinah Binti Abdul Latif, thank you so much for your love, every pray and always being patient with me throughout toughest years together, it means so much to me.

And not to forget, this appreciation also goes to Mr. Ilyas Ishak and his teammates from Shorubber, as well as each person in UniMAP who involved in giving assistance during conducting this research.

May ALLAH deliver His blessing to all of us and only ALLAH, The Almighty could repay all my debts to all of you.

Thank you so much.

TABLE OF CONTENTS

THE	CSIS DECLARATION	ii
DED	DICATION	iii
ACK	KNOWLEDGEMENT	iv
TAB	LE OF CONTENTS	V
LIST	Γ OF FIGURES	xvi
LIST	Γ OF TABLES	xxiv
LIST	Γ OF ABBREVIATIONS	xxvii
LIST	Γ OF SYMBOLS	xxix
ABS	TRAK	XXX
	T OF FIGURES T OF TABLES T OF ABBREVIATIONS T OF SYMBOLS TRAK TRACT APTER 1 INTRODUCTION	xxxi
CHA	APTER 1 INTRODUCTION	
1.1	Background	1
1.2	Problem statement	4
1.3	Research questions and hypotheses	7
1.4 (Aim and objectives of study	8
1.5	Significance of study	9
1.6	Scope of research	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	12
2.2	Overview of hazardous waste perspective in Malaysia	12
	2.2.1 Incineration of waste in Malaysia	13

2.3	Treatn	nent approach	13
2.4	Waste	production and characterisation	14
	2.4.1	Air pollution control residue	14
		2.4.1.1 Composition of air pollution control residue	16
	2.4.2	Incinerated rubber sludge	17
		2.4.2.1 Composition of incinerated rubber sludge	18
2.5	Correl	ation between the hazardous incinerated wastes	19
	2.5.1	Heavy metals problem	19
	2.5.2	Problem associate with hazardous waste handling	20
2.6	Thresh	nold limit value for heavy metals in these schedule wastes	21
2.7	Advan	tages and disadvantages or limitation of current disposal method	22
	2.7.1	APC residue current disposal method	22
	2.7.2	Current disposal methods of APC residue from other researchers	24
	2.7.3	Current disposal method for incinerated rubber sludge	25
2.8	Heavy	metals and its general effects on human and ecosystem	26
	2.8.1	Effect of heavy metals on human	26
	2.8.2	Effect of heavy metals on plants	27
(2.8.3	Effect of heavy metals on animals	27
	2.8.4	General effects of selected heavy metals	28
		2.8.4.1 Cadmium	28
		2.8.4.2 Chromium	29
		2.8.4.3 Lead	30
		2.8.4.4 Zinc	31
		2.8.4.5 Iron	31
		2.8.4.6 Nickel	32

		2.8.4.7 Magnesium and calcium	33
2.9	Chlori	de and sulphate	33
	2.9.1	Chloride	34
		2.9.1.1 Effect of chloride to human and environment	34
		2.9.1.2 Determination of chloride via extraction method	35
	2.9.2	Sulphate	39
		2.9.2.1 Effect of sulphate on human and environment	39
2.10	Stabili	isation and solidification with cement	40
	2.10.1	Fundamental of stabilisation/solidification	40
	2.10.2	Advantage and limitation of stabilisation/solidification	41
	2.10.3	Factorial design	42
2.11	Calciu	im aluminate cement	43
	2.11.1	Physical properties of calcium aluminate cements	45
	2.11.2	Chemical properties of calcium aluminate cements	45
2.12	Ordina	ary Portland cement	46
	2.12.1	Physical properties	47
	2.12.2	Chemical properties	48
	2.12.3	OPC composition	48
	2.12.4	Mineral phases exist within the hardened cement paste	48
2.13	Lime a	and hydrated lime	50
2.14	Rice h	usk ash	51
	2.14.1	Rice husk related environmental issues	51
	2.14.2	Properties of rice husk ash	52
	2.14.3	Physical properties of rice husk ash	53
	2.14.4	Application of rice husk ash	53

2.15	Stabilised/solidified cube samples properties	54
	2.15.1 Strength development of stabilised/solidified sample	54
	2.15.2 Stabilised/solidified sample chemical properties evaluation	55
2.16	Mechanism in stabilisation/solidification	55
	2.16.1 Hydration products of calcium aluminate cement	56
	2.16.1.1 Friedel's salt	56
	2.16.1.2 Ettringite	57
	2.16.2 Ordinary Portland cement hydration mechanism	58
2.17	Effect of parameters on stabilised/solidified cube specimens	60
	2.17.1 Effect of water/cement ratio on cement hydration of	
	stabilised/solidified cube specimens	60
	2.17.2 Effect of waste to binder ratio on stabilised/solidified sample	61
	2.17.3 Effect of curing process on stabilised/solidified sample: macro	
	and microstructure aspect	62
	2.17.4 Effect of rice husk ash to unconfined compressive strength	63
	2.17.5 Efficiency of rice husk ash in heavy metals adsorption capacity	64
2.18	Leaching	64
2.19	Extraction of heavy metal	65
2.20	Previous literature on heavy metals treatment using S/S	68

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introd	uction	70
3.2	Mater	ials and chemicals	73
	3.2.1	Source of materials in first stage of experiment	73
	3.2.2	Source of materials in second stage of experiment	74

3.3	Waste	e characterisation	74
	3.3.1	Air pollution control residue characterisation	75
	3.3.2	Incinerated rubber sludge characterisation	75
		3.3.2.1 Physical characterisation of incinerated rubber sludge	77
		3.3.2.2 Chemical characterisation of incinerated rubber sludge	78
3.4	Factor	rial design	80
	3.4.1	Calcium aluminate cements mix formulation	80
	3.4.2	Ordinary Portland cement mix formulation	86
3.5	Prepa	ration of materials	91
	3.5.1	Calcium aluminate cements mix formulation Ordinary Portland cement mix formulation ration of materials Salt solution preparation Plastic moulds preparation	91
	3.5.2	Plastic moulds preparation	91
	3.5.3	Rice husk activated carbon and rice husk ash preparation	92
		3.5.3.1 Size distribution of rice husk activated carbon	96
	3.5.4	Wooden moulds preparation	97
3.6	Fresh	mix preparation	98
	3.6.1	Fresh mix vibration process	100
	3.6.2	Fresh mix testing	101
(0	3.6.2.1 Consistency test	101
		3.6.2.2 Bleeding test	102
		3.6.2.3 Initial and final setting time	102
3.7	Curing	g	103
3.8	Demo	uld cube specimens	104
3.9	Test f	or hardened specimens	105
	3.9.1	Unconfined compressive strength	105
	3.9.2	Density	107

	3.9.3	Moisture content analysis	108
	3.9.4	Acid neutralisation capacity test	109
		3.9.4.1 Preparation stage	109
		3.9.4.2 Three and eleven points ANC	111
	3.9.5	X-Ray Diffraction	114
	3.9.6	Tank leaching test	115
	3.9.7	Ion Chromatography	117
		3.9.7.1 Mobile phase preparation	117
		3.9.7.2 Ion Chromatography sample preparation, injection	
		and analysis	118
	3.9.8	Atomic Absorption Spectroscopy	119
		3.9.8.1 Atomic Absorption Spectroscopy sample preparation	
		and analysis	120
	3.9.9	X-Ray Fluorescence	120
	3.9.10	Scanning Electron Microscopy	121
		xen .	
CHAF	TER 4	RESULTS AND DISCUSSIONS: FIRST STAGE OF	
C		EXPERIMENT	
4.1	Waste	characterisation of APC residue	123
	4.1.1	Control batches	123
	4.1.2	Sample batches	124
4.2	Observ	vation during mixing process	125
	4.2.1	Flash setting	125
4.3	Consis	tency test	127
4.4	Bleedi	ng test	128

	4.4.1	Initial and final setting times	128
4.5	Uncor	nfined compressive strength	130
	4.5.1	Control batches	130
		4.5.1.1 Secar 71 with NaCl	130
		4.5.1.2 Secar 71 with CaCl2	132
		4.5.1.3 Secar 71 with CaSO4	133
		4.5.1.4 Ciment Fondu with NaCl	134
		4.5.1.5 Ciment Fondu with CaCl2	135
		 4.5.1.4 Ciment Fondu with NaCl 4.5.1.5 Ciment Fondu with CaCl2 4.5.1.6 Ciment Fondu with CaSO4 Sample batches 	135
	4.5.2	Sample batches	136
		4.5.2.1 Secar 71 with APC residue	137
		4.5.2.2 10% Secar 71 with APC residue	138
		4.5.2.3 Ciment Fondu with APC residue	139
		4.5.2.4 10% Ciment Fondu with APC	140
	4.5.3	Comparison between dry and wet compressive strengths	141
		4.5.3.1 Control batches	142
		4.5.3.2 Sample batches	145
(4.5.4	Moisture content analysis	147
		4.5.4.1 Control and sample batches	147
	4.5.5	Acid neutralisation capacity	150
		4.5.5.1 ANC of Secar 71 control batches	150
		4.5.5.2 ANC of Ciment Fondu control batches	151
		4.5.5.3 ANC of Secar 71 sample batches	153
		4.5.5.4 ANC of Ciment Fondu sample batches	154
	4.5.6	X-Ray Diffraction analysis	156

		4.5.6.1 Friedel's salt mineral phases from Secar 71 control batches	156
		4.5.6.2 Friedel's salt mineral phases from Ciment Fondu control	
		batches	159
		4.5.6.3 Ettringite mineral phases from Secar 71 with CaSO4	
		control batch	160
		4.5.6.4 Calcium aluminate cement with APC residue	161
СНА	PTER 5	5 RESULTS AND DISCUSSIONS: SECOND STAGE OF	
		EXPERIMENT	
5.1	Introd	uction	163
5.2	Waste	characterisation of incinerated rubber sludge	163
5.3	Physic	cal properties test	163
	5.3.1	Observation	164
	5.3.2	Size distribution of waste	164
	5.3.3	Moisture content analysis	166
5.4	Chem	ical properties test	166
	5.4.1	Extraction and analysis of incinerated rubber sludge	166
5.5	Factor	rial design	170
	5.5.1	Control batches description	170
	5.5.2	Sample batches description	171
5.6	Size d	istribution of rice husk ash	172
5.7	Uncor	nfined compressive strength testing	176
	5.7.1	Control batch	176
	5.7.2	Sample batch	182
		5.7.2.1 OPC with RHA sample batches	182

		5.7.2.2 OPC with waste sample batches	191
		5.7.2.3 OPC with RHA and waste sample batches	194
5.8	Effects	s of water to cement (w/c) ratio and density to compressive strength	197
	5.8.1	Comparison between OPC with RHA towards control batches	197
	5.8.2	Comparison between OPC with waste towards control batches	201
	5.8.3	Comparison between OPC with RHA and waste towards	
		control batches	205
5.9	Effects	s of dry and wet curing condition on compressive strength	209
	5.9.1	Control batch	209
5.10	Compa	arison between dry and wet compressive strength	210
	5.10.1	OPC with RHA	210
	5.10.2	OPC with waste	212
	5.10.3	OPC with waste and RHA	214
5.11	Acid n	eutralisation capacity	219
	5.11.1	Control batches (11 points ANC)	219
	5.11.2	Sample batches ANC (11 points)	220
	, mil	5.11.2.1 OPC with RHA	220
C		5.11.2.2 OPC with waste	222
		5.11.2.3 OPC with waste and RHA	223
5.12	Tank l	eaching test	224
5.13	Analys	sis of heavy metals compositions from leaching and raw	
	sample	es using X-Ray Fluorescence	224
	5.13.1	Raw OPC	225
	5.13.2	Rice husk ash at 500°C and 800°C	226

5.14	Analys	sis of heavy metals composition from leaching samples	
	using A	Atomic Absorption Spectrometer	227
	5.14.1	Calcium leaching	227
		5.14.1.1 Control batches	228
		5.14.1.2 OPC with RHA	229
		5.14.1.3 OPC with waste	230
		5.14.1.4 OPC with waste and RHA	231
	5.14.2	Iron leaching	232
		5.14.2.1 Control batch	232
		 5.14.1.4 OPC with waste and RHA Iron leaching 5.14.2.1 Control batch 5.14.2.2 OPC with RHA 5.14.2.3 OPC with waste 	233
		5.14.2.3 OPC with waste	234
		5.14.2.4 OPC with waste and RHA	235
	5.14.3	Magnesium leaching	236
		5.14.3.1 Control batches	236
		5.14.3.2 OPC with RHA	237
		5.14.3.3 OPC with waste	238
		5.14.3.4 OPC with waste and RHA	239
(5.14.4	Lead leaching	240
		5.14.4.1 Control batches	240
		5.14.4.2 OPC with RHA	241
		5.14.4.3 OPC with waste	242
		5.14.4.4 OPC with waste and RHA	243
	5.14.5	Zinc leaching	244
		5.14.5.1 Control batches	244
		5.14.5.2 OPC with RHA	245

	5.14.5.3 OPC with waste	246
	5.14.5.4 OPC with waste and RHA	248
	5.14.6 Cadmium, chromium and nickel leaching	249
5.15	Ion Chromatography	249
	5.15.1 Analysis of anions from tank leaching samples	249
CHA	PTER 6 CONCLUSIONS AND RECOMMENDATIONS	252
	Wiles	
REFE	ERENCES	256
APPF	ENDIX A	269
APPE	ENDIX B	270
APPE	ENDIX C	271
APPE	ENDIX D	272
	PTER 6 CONCLUSIONS AND RECOMMENDATIONS ERENCES ENDIX A ENDIX B ENDIX C ENDIX C ENDIX D ENDIX D	
	renter	
	TUIS	

xv

LIST OF FIGURES

NO.		PAGE
2.1	Process conversion of lime to hydrated lime	50
3.1	First stage of experiments flow chart	71
3.2	Second stage of experiments flow chart	72
3.3	Flow chart of incinerated rubber sludge characterisation process	76
3.4	A) Stacked of standard stainless steel sieves,B) Mechanical shaker with sieves	77
3.5	Experimental set up for extraction process of IRS	79
3.6	A) Empty plastic moulds, B) Filled plastic moulds	92
3.7	Flow chart of rice hush activated carbon and rice husk ash preparation	93
3.8	Disk mill grinder unit	94
3.9	Overall view of disk mill and its sieves	94
3.10	A) Rice husk original size, B) Grinded rice husk (≤ 1 mm) using Disk Mill	95
3.11	A) Rice husk ash, B) Rice husk activated carbon	96
3.12	A) Overall view of wooden moulds,B) Close up view of wooden mould	98
3.13	A) 10 L Hobart mixer, B) 20 L Ultraform mixer	98
3.14	A) Vibration table at University College LondonB) Vibration table at Universiti Malaysia Perlis	100

3.15	Flow table	101
3.16	A) Vicat needle instrument, B) Graph paper,C) Initial setting needle, D) Final setting needle	103
3.17	A) Compression machine in concrete lab, UCLB) Compression part and movement direction	106
3.18	GOTECH compression machine at UniMAP	107
3.19	(A) Inner view of the machine, (B) Titanium ball machine,(C) Titanium ball mill sample container	110
3.20	360° vertical loading rotational machine at University College London	112
3.21	Rotary machine constructed in Universiti Malaysia Perlis	113
3.22	JENWAY 4330 pH meter for pH, redox and conductivity measurements	114
3.23	Vacuum desiccator drying technique	115
3.24	The tank leaching test	116
3.25	Atomic absorption spectroscopy	119
4.1 ©	The occurrence of flash setting in mixing bowl	125
4.2	UCS summary of dry Secar 71 with NaCl at 7, 28 and 56 days	130
4.3	UCS summary of Secar 71 with CaCl ₂ at 7, 28 and 56 days	132
4.4	UCS summary of Secar 71 with $CaSO_4$ at 7, 28 and 56 days	133
4.5	UCS summary of Ciment Fondu with NaCl at 7, 28 and 56 days	134

4.6	UCS summary of Ciment Fondu with $CaSO_4$ at 7, 28 and 56 days	135
4.7	UCS summary of Secar 71 with APC residue at 7, 28 and 56 days	137
4.8	UCS summary of 10% Secar 71 with APC residue at 7, 28 and 56 days	138
4.9	UCS summary of 10% Ciment Fondu with APC residue at 7, 28 and 56 days	140
4.10	UCS summary of dry and wet Secar 71 control batches from 7 to 56 days	142
4.11	S71/CaSO ₄ sample disintegration during water immersion	143
4.12	UCS summary of dry and wet Ciment Fondu control batches from 7 to 56 days	144
4.13	UCS summary of dry and wet Secar 71 sample batches at 7, 28 and 56 days	145
4.14	UCS summary of dry and wet Ciment Fondu sample batches at 7, 28 and 56 days	146
4.15	ANC 11 points summary of Secar control batches samples	150
4.16	ANC 11 points summary of Ciment Fondu control batches samples	151
4.17	ANC 11 points summary of Secar 71 sample batches	153
4.18	ANC 11 points summary of Ciment Fondu sample batch	154
4.19	Friedel's salt in Secar 71 with NaCl control batch	157

4.20	Friedel's salt in Secar 71 with CaCl ₂ control batch	157
4.21	Friedel's salt in Ciment Fondu with NaCl control batch	159
4.22	Ettringite from Secar 71 with CaSO ₄ control batch	160
4.23	Ettringite from Ciment Fondu with CaSO ₄ control batch	160
4.24	XRD analysis of Ciment Fondu with APC residue	161
5.1	Raw incinerated rubber sludge	164
5.2	Size distribution of raw incinerated rubber sludge	165
5.3	XRF analysis of incinerated rubber sludge (powdered form)	167
5.4	Analysis of incinerated rubber sludge extracts using XRF	168
5.5	Composition comparison between powdered incinerated rubber sludge, acid and ultrapure water extractions using XRF	169
5.6	Size distribution of rice husk ash	172
5.7	SEM images of RHA at 500°C with magnification from 500 to 10,000x	174
5.8	SEM images of RHA at 800°C with magnification from 500 to 10,000x	175
5.9	UCS 7 days of dry CB01 and CB02 specimens	177
5.10	UCS 28 days of dry CB01 and CB02 specimens	178
5.11	UCS 56 days of dry CB01 and CB02 specimens	179

5.12	UCS summary of dry CB01 7, 28 and 56 days	180
5.13	UCS summary of dry CB02 7, 28 and 56 days	181
5.14	UCS 7 days of dry OR1, OR2 and OR3 cube specimens	183
5.15	UCS 28 days of OR1, OR2 and OR3 cube specimens	184
5.16	UCS 56 days of OR1, OR2 and OR3 cube specimens	185
5.17	UCS summary of dry OR1 7, 28 and 56 days	186
5.18	SEM images of OR1with magnification from 500 to 10,000x	187
5.19	UCS summary of dry OR2 7, 28 and 56 days	188
5.20	UCS summary of dry OR3 7, 28 and 56 days	189
5.21	SEM images of OR3 with magnification from 500 to 10,000x	190
5.22	UCS 7 days of dry OW1, OW2 and OW3 cube specimens	191
5.23	UCS 28 days of dry OW1, OW2 and OW3 cube specimens	192
5.24	UCS 56 days of dry OW1, OW2 and OW3 cube specimens	193
5.25	UCS 7 days of OWR1, OWR2 and OWR3 cube specimens	194
5.26	UCS 28 days of OWR1, ORW2 and OWR3 cube specimens	195
5.27	UCS 56 days of OWR1, OWR2 and OWR3 cube specimens	196
5.28	Average strength of control batch and OPC with RHA	197

5.29	Comparison of density between control batch and OPC with RHA batches	199
5.30	Average strength of control batch and OPC with waste	201
5.31	OW1 SEM images with magnification from 500 to 10, 000x	202
5.32	Comparison of density between control batch and OPC with waste batches	204
5.33	Average strength of control batch and OPC with RHA and waste	205
5.34	Comparison of density between control batch and OPC with waste and RHA batches	207
5.35	UCS summary of dry and wet of CB01 and CB02 at 7 to 56 days	209
5.36	UCS summary of average dry and wet of OR1, OR2 and OR3 at 7 to 56 days	211
5.37	UCS summary of average dry and wet of OW1, OW2 and OW3 at 7 to 56 days	212
5.38	UCS summary of average dry and wet of OWR1, OWR2 and OWR3 at 7 to 56 days	214
5.39	SEM images of OWR1 with magnification from 500 to 10,000x	215
5.40	SEM images of OWR2 with magnification from 500 to 10,000x	216
5.41	SEM images of OWR3 with magnification from 500 to 10,000x	217
5.42	ANC 11points of CB01 and CB02 samples at 28 days	219
5.43	ANC 11 points of OR1, OR2 and OR3 samples at 28 days	220

5.44	ANC 11 points of OW1, OW2 and OW3 samples at 28 days	222
5.45	ANC 11 points of OWR1, OWR2 and OWR3 samples at 28 days	223
5.46	Raw OPC composition analysis using XRF	225
5.47	Analysis of raw RHA produced at 500°C and 800°C using XRF	226
5.48	Calcium leaching of control batches from 6 hours to 64 days	228
5.49	Calcium leaching of OPC with RHA as compared to control batch from 6 hours to 64 days	229
5.50	Calcium leaching of OPC with waste as compared to control batch from 6 hours to 64 days	230
5.51	Calcium leaching of OPC with waste and RHA compared to control batch from 6 hours to 64 days	231
5.52	Iron leaching of control batches from 6 hours to 64 days	232
5.53	Iron leaching from OPC with RHA as compared to control batches from 6 hours to 64 hours	233
5.54	Iron leaching of OPC with waste as compared to control batches from 6 hours to 64 days	234
5.55	Iron leaching of OPC with waste and RHA as compared to control batches from 6 hours to 64 days	235
5.56	Magnesium leaching of control batches from 6 hours to 64 days	236

5.57	Magnesium leaching of OPC with RHA as compared to control batches from 6 hours to 64 days	237
5.58	Magnesium leaching of OPC with waste as compared to control batches from 6 hours to 64 days	238
5.59	Magnesium leaching of OPC with waste and RHA as compared to control batches from 6 hours to 64 days	239
5.60	Lead leaching of control batches from 6 hours to 64 days	240
5.61	Lead leaching of OPC with RHA as compared to control batches from 6 hours to 64 days	241
5.62	Lead leaching of OPC with waste as compared to control batches from 6 hours to 64 days	242
5.63	Lead leaching of OPC with waste and RHA as compared to control batches from 6 hours to 64 days	243
5.64	Zinc leaching of control batches from 6 hours to 64 days	244
5.65	Zinc leaching of OPC with RHA as compared to control batches from 6 hours to 64 days	245
5.66	Zinc leaching of OPC with waste as compared to control batches from 6 hours to 64 days	246
5.67	Zinc leaching of OPC with waste and RHA as compared to control batches from 6 hours to 64 days	248

LIST OF TABLES

NO.		PAGE
2.1	General chemical composition major elements of APC residue by XRF analysis (Chimenos, et al., 2005)	16
2.2	General minor elements of APC residue characterised by ICP-MS (Chimenos, et al., 2005)	17
2.3	Standard regulatory limit for heavy metals in soil (USEPA, 1999a)	21
2.4	Standard regulatory limit for heavy metals in drinking water (USEPA, 2009)	22
2.5	British standard method on chloride extraction	36
2.6	Previous studies on chloride extraction methods	37
2.7	Calcium aluminate cements secondary mineralogy phases (Kerneos, 2006a, 2006b)	46
2.8	Physical properties for OPC Type 1 (CEM-1)	47
2.9	Basic composition of Portland cement (Gambir, 2004)	48
2.10	C-S-H formation according to Ca/Si ratio (Nonat, 2004; Stegemann & Zhou, 2009)	59
2.11	The effect of waste substances on cement-based system (Stegemann & Zhou, 2009)	61