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Perkembangan Aluminium Oksida Teranod Daripada Aloi Al-Mn 
 

 

ABSTRAK 

 

 Kajian ini dibahagi kepada dua bahagian. Bahagian pertama kajian ini memberi 
tumpuan kepada sintesis aluminium oksida teranod (AAO) berliang tersusun dengan 
menggunakan rawatan pelarutan oksida. AAO berliang telah dihasil dengan penganodan 
aluminium 99.99% di dalam asid oxalik 0.3 M pada suhu 15oC selama 15 minit. 
Substrat teranod terdedah kepada rawatan pelarutan oksida dengan direndam di dalam 
campuran asid kromik dan asid fosforik yang dikacau. Kesan rawatan pelarutan oksida 
terhadap morfologi dan keteraturan AAO berliang telah dikaji dengan menggunakan 
mikroskop imbasan elektron. Keputusan menunjukkan pendedahan AAO berliang 
kepada rawatan pelarutan oksida selama tiga minit mendedahkan susunan liang yang 
tersusun atur yang terhasil pada peringkat pertumbuhan mantap. Keteraturan AAO 
berliang telah ditambahbaikkan. Dalam bahagian kedua kajian, AAO berliang telah 
dihasil daripada substrat aloi aluminium mangan dan kesan kandungan mangan, voltan 
penganodan, kepekatan asid oxalik dan suhu asid oxalik terhadap sifat penganodan, 
morfologi, sifat-sifat dimensi dan kinetik pertumbuhan telah dikaji. Keputusan 
menunjukkan penambahan mangan dari 0.5 wt % hingga 2.0 wt % ke dalam substrat Al 
mengurangkan ketumpatan arus, keteraturan dan kinetik pertumbuhan AAO berliang. 
Saiz liang dan jarak antara liang juga didapati berkurang dengan penambahan mangan. 
Kecekapan arus proses penganodan berkurang apabila kandungan Mn bertambah 
kepada 1.0 wt %, tetapi meningkat apabila kandungan Mn bertambah kepda 2.0 wt %. 
Analisa corak XRD menunjukkan alumina amorfus telah terhasil di dalam substrat 
untuk semua komposisi dan MnO2 telah didapati di dalam substrat teranod Al-1.5 wt % 
Mn dan Al -2.0 wt % Mn. Untuk kajian mengenai kesan voltan penganodan, 
penganodan substrat Al-0.5 wt % di bawah pengaruh voltan penganodan yang 
meningkat dari 30 – 70V telah membawa kepada ketumpatan arus yang lebih tinggi, 
Saiz liang, jarak antara liang yang lebih besar dan kadar pertumbuhan yang lebih tinggi. 
Keteraturan susunan liang AAO berliang telah dipertingkatkan apabila voltan 
penganodan dinaikkan dari 30 V kepada 50 V, tetapi merosot apabila dipertingkatkan 
kepada 70 V. Pecahan dielektrik berlaku apabila penganodan dijalankan pada 70 V. 
Didapati amaun alumina amorfus bertambah apabila voltan penganodan dinaikkan dari 
30 V kepada 70 V. Penganodan Al-0.5 wt % Mn pada 50 V dalam asid oxalik yang 
kepekatannya meningkat dari 0.1 M kepada 0.7 M menigkatkan ketumpatan arus dan 
kinetik pertumbuhan. AAO berliang tersusun diperolehi apabila asid oksalik yang 
kepekatannya kecuali 0.1 M digunakan. Pertambahan kepekatan asid oxalik 
mengurangkan saiz liang manakala tiada perbezaan ketara antara jarak antara liang 
diperhati. Kecekapan arus berkurang dengan fungsi kepekatan asid oxalik. Keamatan 
relatif puncak luas dalam corak XRD menunjukkan amaun alumina amorfus meningkat 
dengan fungsi kepekatan asid oxalik. Untuk kajian kesan suhu asid oxalik, penganodan 
Al-0.5 wt % Mn pada 50 V dibuat dalam asid oxalik 0.5 M antara suhu 5 oC hingga 25 
oC. Ketumpatan arus dan kinetik pertumbuhan bertambah manakala keteraturan susunan 
liang dan kecekapan arus berkurang dengan suhu asid oxalik yang meningkat. Suhu asid 
oxalik tidak mempunyai kesan ketara terhadap kedua-dua saiz liang dan jarak antara 
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liang. Keamatan relatif puncak luas meningkat menunjukkan amaun alumina amorfus 
bertambah dengan peningkatan suhu asid oxalik. 
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Development of Anodised Aluminium Oxide Nanostructure from Al-Mn Alloy  
 

ABSTRACT 

 

This study was divided into two parts. The first part of the study was focused on 
the synthesis of well ordered porous AAO by using oxide dissolution treatment. The 
porous AAO was formed by anodising of 99.99 % aluminium in 0.3 M oxalic acid at 15 
oC for 15 minutes. Anodised substrates were subjected to oxide dissolution treatment by 
immersing in stirred mixture of chromic acid and phosphoric acid. The effect of oxide 
dissolution treatment on the morphology and regularity of porous AAO was studied by 
using scanning electron microscope. The results showed that exposure of porous AAO 
to oxide dissolution treatment up to three minutes revealed the well ordered pores 
arrangement that formed during the steady state growth stage. Regularity of the porous 
AAO was improved. In the second part of the study, porous AAO was formed from 
aluminium manganese (Al-Mn) alloy substrates and the effect of manganese content, 
anodising voltage, concentration of oxalic acid, and temperature of oxalic acid on the 
anodising behaviour, morphology, dimensional properties and growth kinetics were 
studied. Results showed that the addition of Mn from 0.5 wt % to 2.0 wt % into Al 
substrates reduced the current density, regularity and growth kinetics of porous AAO. 
The pore size and interpore distance were also found to decrease with the addition of 
Mn. Anodising efficiency of anodising process decreased as the Mn content increased 
up to 1.0 wt %, but increased when the Mn content was further increased to 2.0 wt %. 
Analysis of XRD patterns showed that amorphous alumina was formed in substrates of 
all compositions and MnO2 was found to present in Al-1.5 wt % Mn and Al -2.0 wt % 
Mn substrates. For the study of effect of anodising voltage, anodising of Al-0.5 wt % 
Mn under the influence of increasing anodising voltage of 30-70V has led to higher 
current density, larger pore size and interpore distance and higher growth rates. The 
regularity of pore arrangement of porous AAO was improved when the anodising 
voltage was increased from 30 V to 50V, but deteriorated when further increased to 70V. 
Dielectric breakdown occurred when anodising was conducted at 70V. Amount of 
amorphous alumina was found to increase when the anodising voltage was increased 
from 30 V to 70 V. Anodising of Al-0.5 wt % Mn at 50 V in oxalic acid of increasing 
concentration from 0.1 M to 0.7 M increased the current density and growth kinetics. 
Well ordered porous AAOs were obtained when oxalic acid of all concentration was 
used, except 0.1 M. Increase of concentration of oxalic acid decreased the pore size 
while no significant difference in interpore distance was observed. Anodising efficiency 
decreased as a function of concentration of oxalic acid. The relative intensity of broad 
peaks in XRD patterns showed that amount of amorphous alumina increased as a 
function of concentration of oxalic acid. For the study of effect of temperature of oxalic 
acid, anodising of Al-0.5 wt % Mn was conducted at 50V in 0.5 M oxalic acid of 
temperature ranging from 5oC to 25oC. Current density and oxide thickness increased 
while regularity of pores arrangement and anodising efficiency decreased with the 
increasing temperature of oxalic acid. Temperature of oxalic acid did not have obvious 
effect on both pore size and interpore distance. Relative intensities of broad peaks 
increased indicating the amount of amorphous alumina increased with the increasing 
temperature of oxalic acid. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Nanotechnology primarily involves the study of control and manipulation of 

matter at nanometre scale. These matters, known as nanostructured material, are defined 

as materials whose basic units with at least one dimension falls within the range of one 

to one hundred nanometres (Gogotsi, 2006). The confined dimensionality of these 

nanostructured materials has led to the discovery of novel biological, chemical and 

physical properties of these materials. Novel and unique properties of nanostructured 

materials are attributed to the specific size effect and quantum confinement effect. 

Controlled manipulation of these properties has led to new devices and technologies. 

For example, due to the size and shape dependant properties, gold nanoparticle is red in 

colour instead of golden colour for bulk material (Bhattacharya & Srivastava, 2003). 

The change in colour of the gold nanoparticles indicates the change in the optical 

properties and they have bio applications in four area, which are labelling, delivery, 

heating and sensing (Sperling et al., 2008). Due to the good lubricative property and 

softness of graphite, it is used in the making of pencils. The structure of carbon 

nanotube (CNT) is considered similar to that of graphite in which the CNT is 

conceptualized as a single or multiple rolled layers of graphite. However, the 

mechanical strength of CNT which has similar structure to that of  graphite is higher 

than the mechanical strength of stainless steel (Yu et al., 2000). This high strength leads 
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to extensive applications of CNT as reinforcement in various matrixes (Cha et al., 2005; 

Echeberria et al., 2011; Gojny et al., 2004). The confined dimensionality in the 

nanometre scale has lead to the discovery of novel properties of nanostructured 

materials. Thus, there is an increasing research interest on the synthesis, characterisation, 

exploration and exploitation of nanostructured materials.  

Generally, there are two approaches to control and manipulate the size of 

nanostructured materials, which are top-down approach and bottom-up approach. Top-

down approach is the successive manipulation of bulk material to obtain nanostructured 

material. The most commonly used top-down approach is the lithographic method. 

Lithographic method involves the adding and patterning of layers of materials on the 

wafer surface. Nanostructures are then formed by selectively etching away materials of 

certain area. Today, lithography method has revolutionized human lives in the way we 

communicate, travel, and interact. Although top-down approach provides a promising 

way to produce nanostructured materials, the use of lithography methods in the 

fabricating of nanostructured materials faces limitation in the achievable smallest length 

scale and highest aspect ratio of the nanostructured materials.  

Bottom-up approach also played an important role in the development of 

nanotechnology. The principle behind the bottom-up approach is the self assembly 

process. Self assembly process provides a route to spontaneous generation and 

hierarchical organisation of materials by biological or chemical process for the 

fabrication of nanostructured materials (Lin et al., 2001; Zhang et al., 2002). Bottom-up 

approach is increasingly being used as an alternative for the fabrication of 

nanostructured materials due to the fact that it allows smaller geometries than the 

lithography methods. Furthermore, it is more economic than lithography methods 

because it does not waste material to etch and does not employ high cost electron beam 
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lithography techniques. Examples of nanostructured materials fabricated by self 

assembly methods are arrays of magnetic nanowires which maybe useful as data storage 

media (Nielsch et al., 2001) and type 1 collagen which maybe useful in tissue 

engineering and synthesis of biosensor (Xu et al., 2009). However, the weakness of self 

assembly process in the synthesis of nanostructured materials is the low degree of 

control over the regularity and uniformity of the nanostructured materials. This is due to 

the fact that structure of self assembled nanostructured materials is formed based on 

their own guiding or driving force. This limits the structure and design of self assembled 

nanostructured materials.  

With a template, more complicated designs can be achieved by self assembly 

method. Therefore, templated self assembly (TSA) was used for the fabrication of 

nanostructured materials. TSA combines both the top-down and bottom-up approaches 

to fabricate and control the morphology and size distribution of the nanostructured 

materials by limiting the self forming and self ordering processes to occur in the 

templates. Examples of TSA include chemically directed (Stoykovich et al., 2007), 

lithographically assisted (Cheng et al., 2002) and mechanically assisted (Angelescu et 

al., 2004). Thus, TSA provides the benefits of both lithography and self assembly and 

has profound potential in the synthesis of nanostructured materials. The major limitation 

of TSA is the availability of suitable template for the synthesis of nanostructured 

materials. The discovery of well ordered nanoporous anodic aluminium oxide (AAO) 

has enlightened their applications as template for TSA.   

Initially, anodic alumina was used as corrosion resistance protective coating in 

1923 (Durney, 1984). Since then, the range of applications has increased significantly 

and anodising process was extensively studied and investigated. Generally, there are 

two types of anodic alumina, namely barrier type and porous type anodic alumina. 
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