DEVELOPMENT OF NEUROMETRIC ACUTE STRESS ASSESSMENT BASED ON EEG SIGNALS

SAIDATUL ARDEENAWATIE BTE AWANG

UNIVERSITI MALAYSIA PERLIS
2014
DEVELOPMENT OF NEUROMETRIC ACUTE STRESS ASSESSMENT BASED ON EEG SIGNALS

by

SAIDATUL ARDEENAWATIE BTE AWANG
(0940610356)

A work submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Mechatronic Engineering
UNIVERSITI MALAYSIA PERLIS

2014
ACKNOWLEDGMENT

In the name of Allah. The Most Gracious and the Most Merciful. First and foremost, I would like to thank Allah S.W.T for giving me the strengths and his blessing in completing this work. Alhamdullillah, all praises to Allah.

I would like to express my sincere gratitude and appreciation to my supervisor, Prof Dr. Paulraj Murugesan Pandiyar for his continuous inspiration, support, guidance encouragement, advice, patience and individual feedback throughout the course of my PhD study.

I gratefully acknowledge the Malaysia Ministry of Higher Education and Universiti Malaysia Perlis (UniMAP) for offering me scholarship and supporting me to attend conference in order to perform this research successfully, without which, this work would not have been possible.

I would also like to thank to all of the Dean of Centre of Postgraduate (CGS), Prof. Dr. Yusoff Mashor and all CGS's staff for their co-operation. I would also like to express my gratitude and appreciation to Dean and Postgraduate Chairman, School of Mechatronic, Dr. Abu Hassan and Dr. Cheng Ee Meng, respectively.

Last but not least, my sincere thanks also goes to my postgraduate colleagues especially Fauziah bt Mat, Jerrita Arun and Yusnita Ali for their discussions, comments, and advice.

I wish to express my appreciation to my honourable parents, loving brothers and sisters for their support. My thanks are also to my daughters, Ardlynna Zara Lysa Bte Fadzly and Ardlynna Zara Safiyya Bte Fadzly and my son Ardly Ammar Bin Fadzly for giving me happiness, joy and enduring love.

Saidatul Ardeenawatie Bte Awang

2014
TABLE OF CONTENTS

- THESIS DECLARATION i
- ACKNOWLEDGMENT ii
- TABLE OF CONTENTS iii
- LIST OF TABLES viii
- LIST OF FIGURES x
- LIST OF ABBREVIATIONS xv
- LIST OF SYMBOLS xviii
- ABSTRAK xix
- ABSTRACT xx

CHAPTER 1: INTRODUCTION

1.1 Research Background iii
1.2 Problem Statements 3
1.3 Research Objectives 4
1.4 Research Scopes 5
1.5 Thesis Organization 6

CHAPTER 2: OVERVIEW OF MENTAL STRESS RECOGNITION USING EEG SIGNAL

2.1 Introduction 8
2.2 Human Brain 11
2.2.1 Anatomy of brain and functions 12
2.2.2 Neurophysiology of Human Brain 13
2.2.3 Action Potentials 14
2.3 Electroencephalography (EEG) 16
2.4 Origin of Stress 20
2.4.1 The Shortcut Road Route 20
2.4.2 The High Road Route 21
2.5 Stress and Human Performance Effectiveness 21
2.6 An Overview of Previous Studies on Mental Stress Recognition System 22
 2.6.1 Stress and their effect to body regulation system 23
 2.6.2 Stress and type of mental stress elicitation protocol 24
 2.6.3 Stress and their effects on EEG signals 25
 2.6.4 EEG classification for Mental Stress 26
 2.6.5 Mental stress and their quantification method 27
2.7 Summary 28

CHAPTER 3: DEVELOPMENT ON MENTAL STRESS ELICITATION PROTOCOL 33

3.1 Introduction 29
3.2 Related Works 32
3.3 Proposed Methodology 35
 3.3.1 Experimental Set Up and Subject Description 37
 3.3.1.1 Subject Description 37
 3.3.1.2 Depression Anxiety Stress Index (DASS) 38
 3.3.1.3 Electroencephalography Device 39
 3.3.1.4 Patient Monitoring System 41
 3.3.2 Mental Stress based on MAT protocol 41
 3.3.3 Feature Extraction Algorithm 43
 3.3.4 Signal Processing and Analysis 45
 3.3.4.1 Preprocessing 46
 3.3.4.2 Normalization 48
 3.3.4.3 Feature Extraction Using Modified Covariance 48
 3.3.4.4 Feature Reduction Using Statistical Features 52
 3.3.4.5 Classification 53
 3.3.5 Performance Evaluation Method 54
 3.3.5.1 Statistical Analysis Using Paired t-test 54
 3.3.5.2 K-fold cross validation Method 55
3.4 Experimental Data 57
3.5 Experimental Results and Discussions 58
 3.5.1 Validation based on Physiological Signal Analysis 58
 3.5.2 Validation Based on Alpha Brain Asymmetry Score 59
 3.5.3 Validation Based on k-Nearest Neighbors (KNN) classifier 61
3.6 Summary 62
CHAPTER 4: DETERMINATION OF MENTAL STRESS FEATURES

4.1 Introduction 64
4.2 Related Works 65
 4.2.1 Preprocessing 65
 4.2.2 Feature Extraction 67
4.3 Methodology 69
 4.3.1 Feature Extraction Algorithm 69
 4.3.2 Preprocessing Method 70
 4.3.3 Feature Extraction Method 72
 4.3.3.1 Welch Method 74
 4.3.3.2 Yule Walker Method 75
 4.3.3.3 Burg AR Method 77
 4.3.3.4 Akaike Information Criterion 80
 4.3.3.5 Eigenvector Method ï Multiple Signal Classification 80
 4.3.4 Statistical Features Extraction 82
 4.3.5 Feature Selection Using Principal Component Analysis 83
 4.3.6 Validation of Classification 84
 4.3.7 Classification Performance 84
 4.3.8 Analysis 87
 4.3.8.1 Statistical Analysis ï ANOVA 87
 4.3.8.2 Multilayer Perceptron Neural Network 89
4.4 Experimental Result and Discussions 93
 4.4.1 The Selection of Salient Preprocessing Method 93
 4.4.2 Performance Measures 94
 4.4.3 The Selection of Salient Spectrum Estimator 96
 4.4.3.1 Classification Accuracy using k-Nearest Neighbors (KNN) 101
 4.4.3.2 Classification Accuracy using Multilayer Perceptron Neural Network 103
 4.4.3.3 Result based on Statistical Analysis (ANOVA) 105
4.5 Case Study 106
 4.5.1 Case I: Classification of Statistical Features and Features Selection 106
 4.5.2 Case II: Classification of Various Stress Level 107
4.6 Summary 108

CHAPTER 5: OPTIMIZATION OF BRAIN COMPUTER INTERFACE (BCMSI) FOR MULTI CHANNEL MEASUREMENT 110

5.1 Introduction 110
5.2 Related Works 111
5.2.1 Frequency Component Selection in EEG Based On Brain Computer Mental Stress Interface (BCMSI) 111
5.2.2 Channel Selection of EEG for Brain Computer Mental Stress Interface (BCMSI) 113
5.3 Methodology 115
5.3.1 Frequency band Localization Algorithm 115
5.3.2 Optimizing the Channel Selection in EEG Based On BCMSI and Its Algorithm 116
5.4 Experimental Results and Discussion 117
5.4.1 Classification Results for the Frequency Band Localization 117
5.4.1.1 K- Nearest Neighbors 118
5.4.1.2 Statistical Analysis 121
5.4.2 Classification Results for the Channel Selection 122
5.4.2.1 Classification Results for the Discarded Channel with Less Than 10% of the Maximum Value 123
5.4.2.2 Classification Results for the Discarded Channel with Less Than 20% of the Maximum Value 128
5.4.2.3 Classification Results for the Discarded Channel with Less Than 30% of the Maximum Value 133
5.5 Summary 138

CHAPTER 6: DEVELOPMENT OF STRESS INDEX 139
6.1 Introduction 139
6.2 Related Works 139
6.3 Proposed Methodology 141
6.4 Results and Discussion 144
6.4.1 Classification Results for Established and Proposed Stress Asymmetry Score 144
6.4.2 Derivation of Mental Stress Index Based on BCMSI 149
6.4.2.1 Gender Differences in Response toward Stimuli 149
6.4.2.2 Differences in Response to Stressor for Stress and Non Stress Subject 150
6.5 Limitations 152
6.6 Summary 153

CHAPTER 7: CONCLUSIONS AND FUTURE WORKS 154
7.1 Introduction 154
7.2 Achievements 154
7.3 Contribution to knowledge 156
7.4 Suggestions for further work 157
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO</th>
<th>TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of brain waves and mental conditions</td>
</tr>
<tr>
<td>2.2</td>
<td>Electrode position in related to functional brain area</td>
</tr>
<tr>
<td>3.1</td>
<td>Type of inducer that have been used to induce mental stress in previous studies</td>
</tr>
<tr>
<td>3.2</td>
<td>DASS severity ratings</td>
</tr>
<tr>
<td>3.3</td>
<td>Paired t-test results for different between pre and post experiments of blood pressure and heart beat</td>
</tr>
<tr>
<td>3.4</td>
<td>Means of weighted average natural log alpha power EEG values by right and left quadrants during relaxation, low stress, medium stress and high stress</td>
</tr>
<tr>
<td>3.5</td>
<td>Classification accuracies of statistical (energy and power) features using KNN classifier</td>
</tr>
<tr>
<td>4.1</td>
<td>Previous works on evaluation of preprocessing method using different performance measures</td>
</tr>
<tr>
<td>4.2</td>
<td>Confusion matrix formula for 4 x 4 matrixes of datasets</td>
</tr>
<tr>
<td>4.3</td>
<td>Generated confusion matrix for mental stress classification</td>
</tr>
<tr>
<td>4.4</td>
<td>Basic one way ANOVA table</td>
</tr>
<tr>
<td>4.5</td>
<td>Network Training Parameters of MLPNN</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean value of performances measures of different preprocessing method over raw (before preprocessing) and preprocessed EEG signal (64 data per frame)</td>
</tr>
</tbody>
</table>
Table 4.7: Mean value of performances measures of different preprocessing method over raw (before preprocessing) and preprocessed EEG signal (128 data per frame) 95

Table 4.8: Mean value of performances measures of different preprocessing method over raw (before preprocessing) and preprocessed EEG signal (256 data per frame) 96

Table 4.9: The Welch PSD values from four classes of two EEG channels 99

Table 4.10: The Burg PSD values from four classes of two EEG channels (F3 and F4) 99

Table 4.11: The Yule Walker PSD values from four classes of two EEG channels 100

Table 4.12: The Modified Covariance PSD values from four classes of two channels (F3 and F4) 100

Table 4.13: The Multiple Signal Classification (MUSIC) PSD values from four classes of two EEG channels (F3 and F4) 101

Table 4.14: The values of the statistical parameters of the classifier 104

Table 4.15: Statistical Analysis results (ANOVA) for different five types of PSD estimator 105

Table 4.16: Classification of mental stress between two features set and four features set 107

Table 4.17: Classification of mental stress for 3 and 5 levels. 108

Table 5.1: Test of Homogeneity of Variances: (a) Delta (b) Theta (c) Alpha (d) Beta 122

Table 5.2: Mean absolute power for 19 channels 123

Table 5.3: The occurrence of the active channels among the subjects 124
Table 5.4: Number of active channels within the identified regions per subject 125
Table 5.5: Correlation coefficients between the candidate channels in Region 2 125
Table 5.6: Correlation coefficients between the candidate channels in Region 3 126
Table 5.7: Classification accuracy of selected optimal channels 126
Table 5.8: The occurrence of the active channels among the subjects 128
Table 5.9: Number of active channels within the identified regions per subject 129
Table 5.10: Correlation coefficients between the candidate channels in Region 1 130
Table 5.11: Correlation coefficients between the candidate channels in Region 2 130
Table 5.12: Classification accuracy of selected optimal channels 131
Table 5.13: The occurrence of the active channels among the subjects 133
Table 5.14: Number of active channels within the identified regions per subject 134
Table 5.15: Correlation coefficients between the candidate channels in Region 1 135
Table 5.16: Correlation coefficients between the candidate channels in Region 2 135
Table 5.17: Classification accuracy of selected optimal channels 136
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: General Adaptation Syndrome (GAS)(Goldberg, 2012b)</td>
<td>Error!</td>
</tr>
<tr>
<td>Bookmark not defined.</td>
<td></td>
</tr>
<tr>
<td>Figure 2.1: Anatomy of human brain (Saeid, 2007)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2: A simple structure of neuron (Saeid, 2007)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.3: An example of action potential (Saeid., 2007)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.4: Typical normal EEG signal</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.5: Labels for points according to 10-20 electrode placement system (Teplan, 2002)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.6: Two different ways in respond to stress: A-The Shortcut and Route B-The High Road Route</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.7: The efficiency and the stress in human stress response (Reisman, 1997)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.1: Overview of mental stress recognition system</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.2: Process flow of the validation of designed experimental protocol</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.3: Process flow of entire process for the mental stress elicitation protocol</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.4: Subjects fill in the form before undergoing the experiment</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.5: Position of 19 EEG electrodes according to the 10-20 International System</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.6: Experiment Set Up with Mindset 24 Topographic Neuromapping device and 2 desktops</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.7: Portable Patient Monitoring System</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.8: Process flow of mental stress protocol based on MAT</td>
<td>42</td>
</tr>
</tbody>
</table>
Figure 3.9: The process flow of the development mental stress elicitation protocol.

Figure 3.10: Plots showing raw EEG signal and elliptic bandpass filtered EEG.

Figure 3.11: Frequency response for designed 4th order elliptic bandpass filter.

Figure 3.12: Estimation of data spectrum using AR model, p=15, p=20 and p=25.

Figure 3.13: Partitioning design of the obtained feature vectors for the 10-fold cross validation method.

Figure 3.14: Exemplary EEG signals for relaxation, easy stage, moderate stage and difficult stage taken from Subject 1.

Figure 3.15: Boxplot elucidates alpha brain Asymmetry Score for channel F3-F4 in four mental states; baseline (relaxation), Low stress, Medium stress and High stress.

Figure 4.1: Block diagram depicts the selection of salient preprocessing method for BCMSI.

Figure 4.2: Block diagram shows the process to determine the mental stress features.

Figure 4.3: PSD plot of EEG signal using FFT with (a) Welch method (b) Burg AR method (c) Yule Walker AR method.

Figure 4.4: Pattern of Multilayer Perceptron Neural Network (MLPNN).

Figure 4.5: The classification scheme for BCMSI.

Figure 4.6: Power Spectrum (PS) of low stress obtained by Welch, Burg, Modified Covariance, MUSIC and Yule Walker method (Alpha wave, Channel F3).

Figure 4.7: Power Spectrum (PS) of moderate stress obtained by Welch, Burg, Modified Covariance, MUSIC and Yule Walker method (Alpha wave, Channel F3).
Figure 4.8: Power Spectrum (PS) of **high stress** obtained by Welch, Burg, Modified Covariance, MUSIC and Yule Walker method (Alpha wave, Channel F3).

Figure 4.9: Percentage of accuracy for 5 types of PSD estimator using KNN classifier

Figure 4.10: Classifier performance for KNN using Modified Covariance

Figure 5.1: Process flow of the frequency-channel optimization method for EEG signal classification

Figure 5.2: Process flow in determination of frequency band for BCMSI

Figure 5.3: Process flow of the EEG channel selection

Figure 5.4: Percentage accuracy of each sub band frequency by different PSD estimator using KNN classifier for Low stress level

Figure 5.5: Percentage accuracy of each sub band frequency by different PSD estimator using KNN classifier for Moderate stress level

Figure 5.6: Percentage accuracy of each sub band frequency by different PSD estimator using KNN classifier for High stress level

Figure 5.7: Classifier performance for KNN (Modified Covariance + Alpha Wave)

Figure 5.8: Identified region over the scalp for the discarded channel with less than **10% of the maximum value**

Figure 5.9: Classifier performance for KNN for different number of channels

Figure 5.10: Computational time for different number of channels

Figure 5.11: Identified region over the scalp for the discarded channel with less than **20% of the maximum value**
Figure 5.12: Classifier performance for KNN (different number of channels) 131
Figure 5.13: Computational time for different number of channels 132
Figure 5.14: Identified region over the scalp for the discarded channel with less than
30% of the maximum value 134
Figure 5.15: Classifier performance for KNN for different number of channels 136
Figure 5.16: Computational time for different number of channels 136
Figure 6.1: The number of subject in stress and non stress with respect to the gender
142
Figure 6.2: Diagram in developing mental stress index 142
Figure 6.3: Classification Performance of Established (AAS) and Proposed Stress
Asymmetry Score (SAS) 145
Figure 6.4: Classification accuracy of different k-fold ($k=2, 4, 6, 8, 10$) for low level
146
Figure 6.5: Classification accuracy of different k-fold ($k=2, 4, 6, 8, 10$) for moderate
level 147
Figure 6.6: Classification accuracy of different k-fold ($k=2, 4, 6, 8, 10$) for high
level 147
Figure 6.7: Stress Index Graph with respect to gender 149
Figure 6.8: Stress Index Graph with respect to subject’s condition 151
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Alpha Asymmetry Score</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ANS</td>
<td>Autonomous Nervous System</td>
</tr>
<tr>
<td>AP</td>
<td>Action Potential</td>
</tr>
<tr>
<td>AR</td>
<td>Autoregressive</td>
</tr>
<tr>
<td>ARMA</td>
<td>Autoregressive Moving Average</td>
</tr>
<tr>
<td>BCI</td>
<td>Brain Computer Interface</td>
</tr>
<tr>
<td>BCMSI</td>
<td>Brain Computer Mental Stress Interface</td>
</tr>
<tr>
<td>BIS</td>
<td>Bispectral Index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>DASS</td>
<td>Depression Anxiety Stress Index</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>EoG</td>
<td>Electrooculography</td>
</tr>
<tr>
<td>ESD</td>
<td>Energy Spectral Density</td>
</tr>
<tr>
<td>FCM</td>
<td>Fuzzy C Clustering</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>GAS</td>
<td>General Adaptation Syndrome</td>
</tr>
<tr>
<td>GSC</td>
<td>Galvanic Skin Resistance</td>
</tr>
<tr>
<td>HR</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>HRV</td>
<td>Heart Rate Variability</td>
</tr>
<tr>
<td>IQ</td>
<td>Intelligent Question</td>
</tr>
<tr>
<td>KNN</td>
<td>K- Nearest Neighbors</td>
</tr>
<tr>
<td>L-O-O</td>
<td>Leave-One-Out</td>
</tr>
<tr>
<td>LFA</td>
<td>Left Frontal Asymmetry</td>
</tr>
<tr>
<td>MA</td>
<td>Moving Average</td>
</tr>
<tr>
<td>MAT</td>
<td>Mental Arithmetic Task</td>
</tr>
<tr>
<td>MLPNN</td>
<td>Multi Layer Perceptron Neural Network</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MUSIC</td>
<td>Multiple Signal Classification</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near Infrared Spectroscopy</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral Nervous System</td>
</tr>
<tr>
<td>PR</td>
<td>Pulse Rate</td>
</tr>
<tr>
<td>PS</td>
<td>Power Spectrum</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectrum Density</td>
</tr>
<tr>
<td>PTG</td>
<td>Plethymography</td>
</tr>
<tr>
<td>SAS</td>
<td>Stress Asymmetry Score</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SNS</td>
<td>Sympathetic Nervous System</td>
</tr>
<tr>
<td>TP</td>
<td>Time Pressure</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
<tr>
<td>θ</td>
<td>Theta</td>
</tr>
<tr>
<td>Α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>Γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>Π</td>
<td>Power</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
<tr>
<td>ζ</td>
<td>Asymmetry Score</td>
</tr>
<tr>
<td>Φ</td>
<td>Stress Index</td>
</tr>
</tbody>
</table>
Pembangunan Neurometrik bagi penilaian Tekanan Akut Berdasarkan Isyarat EEG

ABSTRAK

Pada masa kini, tekanan perasaan adalah isu kesihatan yang serius dan membawa kepada kemurungan, keletihan dan insomnia. Tekanan boleh dibahagikan kepada dua jenis iaitu eustress dan distress. Eustress atau tekanan positif merujuk kepada tekanan yang boleh membantu untuk meningkatkan prestasi individu. Sebaliknya, Distress atau tekanan negatif boleh membinasakan seorang dengan mewujudkan kemurungan dan merosakkan kualiti hidup. Pembangunan indeks berangka adalah penting untuk memahami tahap keseriusan tekanan tersebut. Pembangunan protokol dalam memebutik data perolehan adalah sangat penting bagi membentuk sistem data yang dapat memberikan tahap tekanan yang berbeza-beza. Dalam kajian ini, beberapa pengubahsuaian telah dilakukan kepada Tugasan Mental Aritmetik yang sedia ada bagi memastikan protokol yang direka mampu untuk mendorong intensiti yang berbeza tekanan seperti rendah, sederhana dan tinggi. Protokol pengujian dinamik dan konsep tekanan masa telah dicadangkan dalam kerja ini. Untuk tujuan pengesahan kebolehupayaan protokol, tiga cara pengesahan telah digunapak iaitu: K Kejiranan paling hampir (KNN), Alpha Otak Asimetri dan Analisa statistik (Ujian-t berpasangan). Hasil daripada kajian ini, didapat bahawa protokol eksperimen yang dicadangkan adalah setanding berdasarkan kepada (i) Hasil ujian-t menunjukkan perubahan fisiologi pra dan pos adalah signifikan secara statistik (p <0.01) (ii) Nilai purata Alpha Otak Asimetri adalah setanding dan mempunyai potensi untuk membezakan antara tahap dan (iii) ketepatan peratusan klasifikasi sebanyak 84%. Keputusan ini mengesahkan bahawa protokol yang dicadangkan mempunyai potensi dalam mengklasifikasikan tahap tekanan mental. Selain daripada itu, kaedah pra proses dengan penapis eliptik dan setiap data bingkai dengan 256 data per bingkai adalah paling sesuai. Pengekstrakan ciri dengan menggunakan lima jenis penganggar spektrum (Welch, Burg, Yule Walker, Pengubahsuaian Kovarians dan Klasifikasi Isyarat Pelbagai) dijelaskan. Ciri-ciri yang diekstrak, disahkan dengan menggunakan proses silang 10 kali dan dikelaskan menggunakan KNN dan disahkan signifikannya dengan menggunakan analisis statistik (ANOVA). Kadar klasifikasi purata peratusan maksimum 86.75% dicapai menggunakan ciri Pengubahsuaian Kovarians diperoleh daripada gelombang alfa menggunakan KNN. Selain daripada itu, kajian menunjukkan, elektrod F3 dan F4 adalah elektrod yang paling bermaklumat dengan ketepatan klasifikasi 93.50%. Akhir sekali, idea baru telah dicadangkan berdasarkan skala yang ditubuhkan iaitu Alpha Asimetri Skor (AAS) sebagai rujukan. Pengubahsuaian telah dibuat dari segi jawat frekuensi yang berfungsi sebagai pembolehubah dalam persamaan indeks tekanan. Ketepatan klasifikasi yang dicadangkan iaitu Tekanan Asimetri Skor (SAS) adalah lebih kurang 96% di mana 10% lebih tinggi daripada AAS. Pembangunan indeks tekanan menjanjikan era baru dalam penyelidikan berasaskan tekanan mental untuk faedah manusia sejagat di masa depan.
ABSTRACT

Nowadays, stress is one of the major issues where too much stress may lead to depression, fatigue and insomnia. Stress can be divided into two types called Eustress and Distress. Eustress or positive stress refers to the positive stress which helps to improve the performance of an individual. In contrast, Distress or negative stress can devastate a person by creating depression and damage the quality of life. It is essential to comprehend and to figure out the state of current stress in numerical index. The development of a reliable data acquisition protocol is a crucial part to elicit mental stress in different level of stress. In this study, some modification on the existing Mental Arithmetic Task (MAT) has been made to ensure the designed protocol is capable to induce the different intensity of stress such as low, moderate and high. The dynamical excitation protocol and time pressure concept are proposed in this work. There are three validation methods have been used, namely, K Nearest Neighbor (KNN), Alpha Brain Asymmetry and statistical analysis (Paired T-test). As a result of this study, it was found that the proposed experimental protocol is comparable as the verification has been made with the following: (i) The t-test result based on physiological changes during pre and post experiment were found to be statistically significant (p<0.01) (ii) The mean value of Alpha Brain Asymmetry are comparable and have a potential to discriminate between levels and (iii) the classification accuracy of 84% confirmed that the proposed protocol have potential in classifying the mental stress level. Besides that, the preprocessing technique applying elliptic filters with 256 data per frame is the most suitable technique. Five types of spectral estimator (Welch, Burg, Yule Walker, Modified Covariance and Multiple Signal Classification) based feature extraction is performed on the normalized signals. The extracted features are cross validated using 10-fold cross validation and classified using KNN and have been proved using statistical analysis (ANOVA). The maximum mean classification rate of 86.75% is achieved using Modified Covariance feature derived from alpha waves using KNN. Besides that, this study found that F3 and F4 are the most informative electrodes with the classification rate of 93.50%. Last but not least, a new algorithm has been proposed based on the more established index, Alpha Asymmetry Score (AAS), as a reference. Modifications have been made in term of the frequency band as a variable in the stress index. The classification accuracy of the proposed Stress Asymmetry Score (SAS) is approximately 96% which is 10% higher than AAS. The development of the stress index promises new era of stress brain related research for future people's benefit.
CHAPTER 1

INTRODUCTION

In a modern society, it is impossible to live without stress. Stress is the emotional and physical strain caused by human body response to pressure from the outside world. Stress is the response to stressor. Every people experienced different stressor daily in their life. Stressor can be physiologic (surgery, injection, disease, exercise, and trauma); environmental (prolonged heat, cold, chemical, radiation and noise); or psychological (threat, intense competition, prolonged conflicts, fear and unpredictability) (Sawyer & Escayg, 2010; Van de Kar LD et.al, 1991). For example, in working environment, stress may be triggered when people need to meet the deadlines to complete the task and overloading of task given by the employer. Moreover, in personal view, the issues which are related to family relationship, financing problem, death of family members and bad health status tend to excite the stress. If chronic, stress can have serious consequences, and is a leading risk factors for heart diseases, diabetes, asthma and depression.

Human body is designed to cope with stress and react to it. Stress can become positive and negative side to human health. Stress can be positive by keeping us alert and ready to avoid danger whereas stress becomes negative when a person faces continuous challenges without relief or relaxation between challenges. As a result, the person becomes overworked and stress related tension builds.

World Health Organization (WHO) has reported that 43% of all adults suffer adverse health effects from stress. Stress can play a part in problems such as headaches, high blood pressure, heart problems, diabetes, asthma, arthritis, depression and anxiety.
On the other hand, untreated stress reactions may cause the lifetime prevalence of an emotional disorder is more than 50% (Goldberg, 2012a). Physiological responses serve the role as objective indicators of stress as well as a link between stress and health outcomes. Several studies have reported the correlation between physiological changes and stress. (Hayashi, 2006; Tanaka et al. 2012).

Severe and chronic stress can have a destructive effect on the human body including brain function (Lewis et al. 2007). Brain is the major part in human body that has an ability to control and maintain the body regulation by releasing or blocking brain chemical and hormones in blood. In human body, Autonomic Nervous System (ANS) is divided into two types called Sympathetic Nervous System (SNS) and Parasympathetic Nervous System (PNS). SNS is taken place when our body in ‘fight and flight’ condition. In contradictly, PNS stabilizes the body system when the body readies for relaxation. In adjusting the stabilization process by SNS and PNS, it will affect the body regulation such as respiration, digestion, immunization and etc.

The brain’s response to stress are varies in term of the amount of brain signal been released, oxygen demand in brain cell and etc. These stress response can be monitored through the scientific techniques such as Electroencephalography (EEG), Magnetic Resonance Imaging (MRI), functional Magnetic Resonance Imaging (fMRI) and etc. The aforementioned scientific technique gives us a better understanding of how the brain interacts to the external situation and what role of human brain plays whilst an individual is performing a number of tasks in their routine life. EEG is the most used technique to capture brain signals due to its excellent temporal resolution, non-invasiveness, usability and low set up costs (Teplan, 2002).

Recently, EEG is becoming increasingly important in the diagnosis and treatment of brain related disease, neurological disease and other abnormalities. The signal