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PENGUBAHSUAIAN OPTIMUM KE ATAS PERMUKAAN TIUB NANO 

KARBON DINDING BERGANDA DENGAN PENGOKSIDAAN ASID NITRIK 

UNTUK APLIKASI IMOBILISASI DNA 

 

ABSTRAK 

 

 Tesis ini membincangkan tentang pengubahsuaian optimum ke atas permukaan 

tiub nano karbon dinding berganda (MWCNTs) dengan menggunakan kaedah 

pengoksidaan asid nitrik untuk aplikasi imobilisasi DNA. Selepas menjalani 

pengoksidaan asid, bendasing yang terdapat di dalam MWCNTs seperti partikel karbon 

dan pemangkin unsur logam telah Berjaya dikurangkan seperti yang dilaporkan oleh 

ujian Pembelauan Elektron Sinar-X (EDS), Serakan Sinar-X (XRD) dan Analisis 

Termo-Gravimetrik (TGA). Pengoksidaan asid akan memberi kesan kepada pembukaan 

hujung MWCNTs dan menyebabkan kecacatan pada struktur MWCNTs hasil daripada 

serangan asid. Kumpulan unsur oksigen terutama kumpulan karbosilik (COOH) telah 

terhasil pada pembukaan hujung MWCNTs dan juga pada ruangan kecacatan struktur 

yang mana mampu untuk berinteraksi dengan molekul-molekul lain, seperti di dalam 

kes ini, prob amine-DNA. Keputusan ujian Spektroskopi Transformasi Jelmaan Infra-

Merah (FTIR) dan Spektroskopi Raman telah menunjukkan bahawa jumlah COOH 

yang terhasil bergantung kepada kadar kecacatan struktur yang terbentuk. Sementara 

itu, keputusan ujian Voltammetri Pusingan (CV) telah menunjukkan perhubungan terus 

antara arus imobilisasi DNA dengan jumlah COOH. Akan tetapi, kecacatan struktur 

pada MWCNTs turut memberikan kesan kepada arus imobilisasi DNA apabila nisbah 

ID/IG semakin meningkat. Parameter pengoksidaan asid perlu dioptimumkan supaya 

jumlah COOH yang terhasil dapat dimaksimumkan di samping meminimumkan 

kecacatan struktur. Maka dengan itu matlamat utama untuk mendapat arus imobilisasi 

yang maksimum bakal tercapai. Rekabentuk eksperimen L9 Taguchi telah digunakan 
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untuk mengoptimumkan parameter pengoksidaan asid. Keputusan menunjukkan bahawa 

kepekatan asid nitrik pada 5 M, suhu rawatan pada 120 °C, dan masa rawatan selama 6 

jam adalah kombinasi parameter pengoksidaan asid yang optimum.  Peratusan pengaruh 

bagi setiap faktor utama yang digunakan adalah masing-masing 46%, 35% dan 18% 

untuk kepekatan asid, suhu rawatan dan masa rawatan. Sebanyak 11.6% peningkatan 

turut dilaporkan bagi arus imobilisasi DNA hasil daripada pengubahsuaian optimum ini. 
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THE OPTIMIZATION OF MULTI-WALLED CARBON NANOTUBES 

SURFACE MODIFICATION VIA NITRIC ACID OXIDATION FOR DNA 

IMMOBILIZATION 

 

ABSTRACT 

 

 This thesis discussed on the optimization of MWCNTs surface modification via 

nitric acid oxidation for DNA immobilization. After acid oxidation treatment, the 

impurities in multi-walled carbon nanotube (MWCNTs) such as carbonaceous and 

metal catalyst particles are successfully reduced as has been analyzed by energy 

dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and thermogravimetric 

analyzer (TGA). Acid oxidation will caused to the opening of MWCNTs tips and 

structural defects formed on the MWCNTs surface due to the acid attack. Oxygen 

containing functional groups, mainly, carboxylic group (COOH) has been introduced on 

the MWCNTs opened tips and at the defect sites which are useful to interact with other 

molecules, in this case, aminated-ssDNA probe. The results from fourier transform 

infrared spectroscopy (FTIR) and Raman Spectroscopy have shown that the COOH 

amount is depended on the MWCNTs structure defects. Meanwhile, cyclic voltammetry 

(CV) results have indicated that the immobilization current is directly proportional to 

the COOH amount. However, structure defect will affect to the immobilization current 

when ID/IG ratio is increased. The acid oxidation parameter should be optimized, thus 

the amount of COOH can be increased with the minimal structure defect. Therefore, the 

main goal to have a maximum immobilization current can be achieved. L9 Taguchi 

orthogonal array has been used to optimize the acid oxidation parameters. From the 

result, 5 M of nitric acid concentration, 120 °C of treatment temperature and 6 hours of 

treatment time are selected as the most optimum combination of acid oxidation 

parameters. The percentage influence of each main factor is also calculated to be 46%, 
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35% and 18% for nitric acid concentration, treatment time and treatment temperature, 

respectively. The improvement is happened to be 11.6% of increment in the 

immobilization current. 
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CHAPTER 1 

 

BACKGROUND 

 

1.1 Introduction 

 

Unlike detecting the glucose levels for diabetes patients which only required a 

drop of blood directly onto the biosensor, DNA biosensor requires more complex 

procedures. Starting from extracting DNA from the sample until detecting the 

hybridization of DNA, all procedures need to be done in the laboratory because special 

expensive equipments like the real time PCR machine is required. Nowadays, there are 

companies that suggest to their customers to extract their own samples by using a DNA 

kit but the extracted DNA must be sent to the nearest laboratory for at least two to seven 

days in order to obtain the results. Moreover, the analysis takes longer time due to 

classical approaches such as the mass spectrometry and the bio-labeled fluorescence 

techniques that have elongated procedures before the biomolecules are detected 

(Mickelson et. al, 1999). These techniques are very time consuming as compared to the 

biosensor which utilizes electrical testing equipments such as dielectric analyzer and 

potentiostat that are a lot simpler and faster. 

 

The biosensor, also known as the electrochemical sensors, has been under 

intensive research worldwide. They offer great advantages such as simplicity, rapid 

detection, low-cost and high sensitivity (Shu-Feng et. al, 2005). In order to increase the 

accuracy and sensitivity, many scientists have conducted research to find the best 

material to be used as the transducer to improve the signal detected from the DNA 
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hybridization. Although gold and other metals can be used as the sensitive material of 

sensors, CNTs show great potential that ensured it can be used in electrochemical sensor 

too (Shu-Feng et. al, 2005; Kannan et. al, 2006; Christopher et. al, 2010). CNTs are 

promising for sensing applications due to several intriguing properties such as high 

electrical conductivity which is similar to copper, high chemical stability, extremely 

high mechanical strength, good electronic transfer properties, thermal conductivity 

better except diamond, and can carry much higher current (Arben et. al, 2005). In 

particular, their large length-to-diameter aspect ratios (which can be up to 34,000,000:1) 

also provide high surface-to-volume ratios (Wang et. al, 2009). Moreover, CNTs have 

an outstanding ability to mediate fast electron-transfer kinetics for a wide range of 

electroactive species, such as hydrogen peroxide or NADH (Kannan et. al, 2006).  

 

 

 There are three types of CNTs which are Single-Walled Carbon Nanotubes 

(SWCNTs), Double-Walled Carbon Nanotubes (DWCNTs) and Multi-Walled Carbon 

Nanotubes (MWCNTs) (Veena et. al, 2011; Thomas, 2007). Figure 1.1 shows the all 

three types of CNTs. While, the ends of the tubes in Figure 1.2, shows the incomplete 

fullerene structure which contained pentagons (Antonio et. al, 2008).  

 

Figure 1.1: Types of CNTs, (A) SWCNTs, (B) DWCNTs, and (C) MWCNTs  

(Veena et. al, 2011; Thomas, 2007). 
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Figure 1.2: The incomplete fullerene structure of CNTs caps (Antonio et. al, 2008).  

 

 The difference between those is the number of their wall. There is only one layer 

of graphitic rolled in SWCNTs and double layers for DWCNTs. Meanwhile in 

MWCNTs, there are three or more layers of graphitic rolled inside each other. Having 

multiple layers of wall in one single strand of MWCNTs is actually an advantage if the 

end tips of MWCNTs are open. Therefore, many electrons can flow through the multi 

layer at one time. This characteristic can enhance electron transfer rate compared to 

SWCNTs. Besides, SWCNTs with smaller diameter could cause them to be easily lost 

in extreme oxidation of CNTs (Yu et. al, 2004).  

 

 As-synthesized CNTs usually consist of impurities such as carbonaceous and 

metal catalyst. These impurities can affect the CNTs electrical performance if they are 

not removed. Therefore, the purification process has to be done in order to remove the 

impurities. There are three methods of purification namely the physical, the chemical 

and the multi-step purification. Of all the three methods of purification, the chemical 

purification has been widely used since the method not only can successfully remove 

the impurities but also help to overcome the hydrophobicity issue of CNTs by 

introducing oxygenated functional groups at the opened end tips and along the CNTs 

walls (Hou et. al, 2008). The open ends of CNTs tip has resulted in an increased surface 

area while the oxygenated functional groups that are attached to the open ends have 

increased the electron transfer rate of CNTs (Alison et. al, 2005; Porro et. al, 2006). 

Since chemical purification technique can provide oxygenated functional groups 
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attached onto the CNTs surfaces, this technique is justifiable to be used as one of the 

method to surface modify the CNTs.  

 

 Surface modification of CNTs is a method where CNTs surfaces are being 

modified through addition of any types of functional groups to improve the interaction 

between the CNTs and other molecules (Andreas et. al, 2005). Initially, surface 

modification of CNTs is designed to overcome the hydrophobicity of as-synthesized 

CNTs. Nowadays, surface modification of CNTs is essential for it to be used in various 

potential applications such as biosensor. The most common and easiest method used to 

modify the surface of CNTs is by using the acid oxidation. It is widely used due to some 

advantages they possess such as non-toxic, simplicity and low cost. Hydrochloric acid 

(Djordjevic et. al, 2006), nitric acid (Faraj et. al, 2010; Stobinski et. al, 2010), mixture 

of sulfuric acid and nitric acid (Matthew et. al, 2006; Ramin et. al, 2011; Alison et. al, 

2005) are the example of acids that are commonly used as the oxidizing agent during the 

acid oxidation modification process. Datsyuk et. al, (2008) has reported that nitric acid 

can cause structural damage to CNTs due to the strong oxidants attack. However, nitric 

acid is still convenient to be used as oxidizing agent because of its mild oxidation,    

non-toxic, low cost and can provide more oxygenated species, especially carboxylic 

groups as long as precautions are taken in controlling the main parameters such as the 

nitric acid concentration, treatment temperature and treatment time to minimize the 

structural damage of CNTs (Faraj et. al, 2010).  

    

 In the application of DNA immobilization, the amount of carboxylic groups 

(COOH) that are introduced to the open tips and the wall surfaces of CNTs are very 

important as it might affect the number of DNA strands that will possibly be 
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immobilized onto the CNTs. During the immobilization process, the COOH functional 

groups on CNTs will bind with amine-ssDNA probes to form stable amide bonds as 

shown in Figure 1.3.   

 

 

 

 

Figure 1.3: The formation of amide bond during the immobilization of DNA. 

  

 It is assumed in this research that the larger the amount of COOH introduced to 

the CNTs surfaces, the higher the amount of ssDNA can be immobilized onto the 

surface of CNTs. COOH group can be increased by using the stronger oxidants or 

increasing the oxidation time. However, the CNTs structure could be damaged if they 

are treated with stronger oxidants for a longer time. Structural damage could affect the 

electrochemical performance of CNTs because they are losing their original graphene 

structure and their special electrical characteristic. This defect can be controlled by 

optimizing the three main parameters which are the acid concentration, treatment 

temperature and treatment time. Therefore, figuring out the optimum parameter to 

modify the surface of MWCNTs via acid nitric oxidation for DNA immobilization has 

become the aim of this research.  
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1.2 Problem Statement 

 

 DNA biosensor is an electrochemical device that utilizes the ability of two 

complementary strands of nucleic acids to form a double helix (Kerman et. al, 2009). 

Traditional DNA biosensor has been prepared by using a glassy carbon electrode (GCE) 

where the ssDNA probes are immobilized onto the electrode with random orientation 

due to the phosphate backbone and hydrophobic nitrogenous bases, which can have 

multiple interactions with the carbon surfaces (Lucarelli et. al, 2008). However, the 

performance of the DNA biosensor is dependent on the orientation of the immobilized 

ssDNA probes (Christopher et. al, 2010; Cai et. al, 2003). Therefore, this issue has 

become a major concern in producing DNA biosensor with high sensitivity and 

selectivity. By using CNTs as the sensing element, the performance of DNA biosensor 

can be improved. The capability of CNTs to be surface modified with the addition of 

various oxygenated functional groups through acid oxidation has enabled them to 

selectively immobilize ssDNA probe with proper orientation. In addition, the unique 

properties of CNTs such as higher current capacity, faster electron transportation and 

high surface-to-volume ratio also contribute towards improving the DNA biosensor 

performance (Kannan et. al, 2006). 

 

In order to increase the selectivity and sensitivity of the CNTs based DNA 

biosensor, oxygenated functional groups such as -OH, -C=O, and –COOH are 

recommended to be added onto the CNTs surfaces by surface modification through the 

use of acid oxidation treatment (Cher at. al, 2008; Andreas et. al, 2005; Porro et. al, 

2006; Faraj et. al, 2010). Carboxylic groups will act as extra hands to interact with 

amine-ssDNA probe to form stable amide bonds during the immobilization process. The 
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