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Pemodelan Matematik Pemindahan Massa dalam Prob Mikrodialisis

ABSTRAK

Mikrodialisis ialah teknik bagi memperolehi dan menghantar bahan pada
kawasan sasaran (yang mungkin merupakan tisu, organ dsb.), menggunakan satu alat
yang kecil, dinamakan prob. Terdapat pelbagai jenis prob mikrodialisis seperti prob
linear, prob tetolak dan prob konsentrik, dan pemilihan prob adalah bergantung kepada
kawasan pengimplanan, sama ada untuk tisu (jenis tisu berbeza bagi rekabentuk prob
berbeza) atau dalam medium tidak mengalir. Walaupun prob perlu dimasukkan secara
fizikal ke dalam kawasan sasaran, prob mikrodialisis adalah secara relatifnya kecil dan
ianya invasive pada tahap minimal (iaitu, mengakibatkan perubahan atau kecederaan
minima kepada kawasan sasaran). Ini, bersama dengan pelbagai ciri mikrodialisis lain
(contohnya, boleh digunakan pada hanpir semua organ dan tisu, boleh digunakan pada
pesakit yang hidup, sedar dan bergerak, dan sebagainya) membuatkan teknik ini amat
popular. Naum begitu, Nonetheless, perolehan yang rendah, kesangsian berkaitan
dengan resolusi masa dan penyediaan yang rumit bersama dengan keperluan untuk pra-
percubaan bagi tujuan penentukuran, telah menghadkan aplikasi teknik ini. Kekangan
ini adalah lazimnya dikaitkan dengan pembatasan pemindahan massa. Dalam tesis ini,
sebuah rangka kerja matematik yang menggabungkan persamaan-persamaan aliran dan
resapan telah dicadangkan bagi mewakili fenomena pemindahan massa dalam prob
mikrodialisis. Rangka kerja matematik ini kemudiannya digunakan untuk menganalisa
pengaruh yang mungkin dari parameter-parameter yang berkitan terhadap perolehan
glukos (iaitu, analit). Di dalam penyelidikan ini, telah didefinasikan bahawa di dalam
membran bagi prob dan kawasan sekitar prob, proses pemindahan massa adalah
bergantung hanya kepada resapan. Parameter model dan keadaan operasi telah
diperolehi dari kajian persuratan. Dalam bahagian pertama, rangka kerja matematik
telah dibina bagi mewakili pemindahan massa dalam dua prob mikrodialisis yang
primitif, iaitu, prob linear dan prob tetolak. Menggunakan rangka kerja masing-masing,
perolehan glukos dibawah keadaan operasi berbeza telah dibandingkan di antara prob-
prob tersebut, yang telah didefiniasikan untuk beroperasi dalam keadaan yang hampir
sama. Oleh kerana tiada kerja-kerja matematikal yang telah dilakukan sebelum ini untuk
menilai prestasi prob-prob ini, adalah menarik untuk dilihat bagaimana prestasi prob-
prob ini jika kedua-duanya beroperasi dalam keadaan operasi yang hampir sama. Dapat
dilihat dengan jelas bahawa rangka-rangka kerja matematik tersebut adalah cukup
sensitif untuk menunjukkan perubahan kepekatan apabila parameter diubah. Keputusan-
keputusan ini adalah lebih kurang sama dengan apa yang telah dibincangkan dalam
kajian sebelumnya. Membandingkan prestasi kedua-dua prob yang beroperasi dalam
keadaan operasi hampir serupa, prob tetolak telah menunjukkan perolehan glukos yang
lebih tinggi, yang mencerminkan prestasi yang lebih baik. Pendekatan matematik dari
rangka-rangka kerja matematik prob-prob linear dan tetolak yang lebih primitif ini telah
dikembangkan untuk mewakili pemindahan massa dalam prob konsentrik yang lebih
kompleks. Prob ini boleh dikatakan lebih popular dan yang paling lazim dirujuk dalam
kajian-kajian sebelumnya berkaitan mikrodialisis. Rangka kerja ini kemudiannya
digunakan untuk menilai pemindahan massa dalam prob dan kawasan sekitarnya.
Keputusan dalam bentuk peratusan perolehan dan pekali pemindahan massa
keseluruhan bagi keadaan operasi berbeza telah dibincangkan. Perbandingan telah
dibuat dengan rangka kerja mikrodialisis Bungay berdasarkan pemindahan massa bagi
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rekabentuk dan parameter operasi yang berbeza. Keputusan mencadangkan bahawa
rangka kerja konsentrik adalah sensitif terhadap perubahan parameter dan profil
kepekatan yang diperolehi adalah hampir sama dengan rangka kerja Bungay yang
diterima umum. Ini satu indikasi bahawa rangka kerja konsentrik yang dicadangkan
boleh digunakan bagi mewakili fenomena pemindahan massa bagi prob tersebut.
Keputusan dari kerja-kerja numerikal kemudiannya telah dibandingkan dengan kerja
eskperimen. Keputusan tersebut menunjukkan bahawa data simulasi adalah sesuai
dengan data eskperimen menggunakan prob konsentrik 5 mm dengan nilai faktor
penghadangan membran α, bernilai 10. Perbandingan telah dibuat sekali lagi dengan 
prob yang serupa, dengan dengan panjang yang berbeza (10 mm) dan kesesuaian juga
didapati terbaik dengan nilai α lebihkurang 10. Ini adalah justifikasi bahawa rangka 
kerja konsentrik boleh digunakan untuk mewakili fenomena pemindahan massa dalam
prob yang tersebut, dan seterusnya, memberikan justifkasi berkenaan dengan kesahihan
rangka kerja matematik bagi prob yang lebih primitif, sebelumnya.
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Mathematical Modelling of Mass Transport in Microdialysis Probes

ABSTRACT

Microdialysis is a technique for both recovering and administering substances at
a target site (which may be tissues, organs, etc.), using a small equipment termed as
probe. There are many types of microdialysis probes such as the linear probe, the shunt
probe and the concentric probe, and the probe choices are depended on the site of
implantation, whether it is for the tissue (different type of tissue for different probe
design) or in the quiescent medium. Although the probe needs to be physically inserted
into the site, the microdialysis probe is relatively small and is minimally-invasive (i.e.,
causing minimal changes or injuries to the target site). This along with many other
features of microdialysis (e.g., can be performed on almost every organ and tissue, can
be used on living, awake and even moving patients, etc.) make this technique very
popular. Nonetheless, poor recovery, doubts related to temporal resolution, and tedious
preparations plus the need of pre-runs for calibration, limits the application of this
technique. These constraints are generally attributed to mass transfer limitations. In this
thesis, a mathematical framework incorporating convection and diffusion equations
have been proposed to represent transport phenomena in microdialysis probes. This
mathematical framework is then used to analyse the possible influence of various
relevant parameters on glucose (i.e., analyte) recovery. In this work, it is defined that
within the probe’s membrane and probe surrounding area (PSA), the transport process is
solely driven by diffusion. The model parameters and operating conditions have been
obtained from literature. In the first part, a mathematical framework was constructed to
represent mass transport in two primitive microdialysis probes, namely the linear and
shunt probes. Using the respective mathematical frameworks, glucose recoveries under
various operating conditions were compared between the two probes, which were
defined to operate under similar conditions. As there is no mathematical work that has
been done to evaluate these both probes, it would be interesting to see how these two
microdialysis probes may perform under similar operating conditions. It is clearly seen
that the frameworks were sensitive enough to show concentration changes when
parameters were varied. These results were comparable to what was discussed in
literature. Comparing the two probe’s performance under similar conditions, the shunt
probe displayed higher glucose recoveries, which reflect better performance. The
mathematical approach from the more primitive linear and shunt microdialysis probe
frameworks was expanded to represent mass transport in the more complex concentric
microdialysis probe. This probe is arguably the more popular and is the most commonly
referred to in microdialysis literature. The framework is then used to evaluate mass
transport within the probe and its surrounding area. Results on percentage recovery and
overall mass transfer coefficient under various operating conditions have been
discussed. Comparisons were made with the Bungay’s microdialysis framework (BMF)
on mass transport performance under different design and operating parameters. The
results suggested that the concentric probe framework is sensitive to parameter changes,
and the concentration profiles obtained are comparable to the widely accepted BMF.
This is one indication that the proposed concentric probe framework can be used to
represent mass transport phenomena in such probes. The results from the numerical
efforts were then compared to experimental work. It was shown that the simulated data
fits well with experimental data using a 5 mm concentric probe, for membrane
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hindrance factor, α, of 10. The comparison was done again using a similar probe, with a 
different length (10 mm) and fitting was also found best with α of approximately 10. It 
is justified that the concentric mathematical framework can be used to represent mass
transport phenomena in those probes, and in one way, justifies the validity of the
mathematical frameworks for the more primitive probes, beforehand.
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flux through the membrane region. (d) Pressure distribution in
the lumen (Pa). Characteristic are based on simulation for
glucose under control conditions.
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4.6 Fluid flow and mass transfer characteristic for linear
microdialysis probe (SMP). (a) Profile of velocity field in the
lumen. (b) Magnitude of velocity field in the lumen (c) Diffusive
flux through the membrane region. (d) Pressure distribution in
the lumen (Pa). Characteristic are based on simulation for
glucose under control conditions.
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4.7 Surface plot of glucose concentration profile in the linear
microdialysis probe (LMP). This profile is based on simulation
for glucose under control conditions. Dashed line depicts the
middle of the LMP membrane, axially (i.e., z = (L2 – L1)/2).

143

4.8 Radial profile of glucose in the linear microdialysis probe
(LMP) under control parameters. The radial profile is displayed
the middle of the LMP membrane, axially (i.e., z = (L2 – L1)/2),
as represented by dashed line in Fig. 4.7. The dash-dot line in
this figure represents the membrane walls.

143

4.9 Surface plot of glucose concentration profile in the shunt
microdialysis probe (SMP). This profile is based on simulation
for glucose under control conditions. Dashed line depicts the
middle of the SMP membrane, axially (i.e., z = (L5 – L4)/2).

147

4.10 Figure 4.10: Radial profile of glucose in the shunt microdialysis
probe (SMP) under control parameters. The radial profile is
displayed the middle of SMP membrane, axially (i.e., z = (L5 –
L4)/2), as represented by dashed line in Fig. 4.9. The dash-dot
line in this figure represents the membrane walls.
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4.11 Radial profile of glucose in the linear microdialysis probe
(LMP) with various perfusion flowrates under control
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parameters. The radial profile is taken at the middle of the LMP
membrane, axially (i.e., z = (L2 – L1)/2). The dash-dot line
represents the membrane wall.

4.12 Radial profile of glucose in the linear microdialysis probe (SMP)
with various perfusion flowrates under control parameters. The
radial profile is taken at the middle of the SMP membrane,
axially (i.e., z = (L5 – L4)/2). The dash-dot line represents the
membrane wall.

152

4.13 The percentage recovery of analyte (i.e., glucose) with various
perfusion flow rates for LMP and SMP under control conditions.

154

4.14 Effect of shunt flowrates in SMP on percentage recoveries under
control conditions. Comparison of the current mathematical
work at various shunt flow rates were made with experimental
data from Huff et al. (1999).

156

4.15 Radial profile of glucose in the linear microdialysis probe
(LMP) with various membrane thicknesses under control
parameters. The radial profile is taken at the middle of the LMP
membrane, axially (i.e., z = (L2 – L1)/2). The dotted and dashed
lines represent the lumen-membrane and membrane-PSA
interface, respectively.

158

4.16 Radial profile of glucose in the shunt microdialysis probe (SMP)
with various membrane thicknesses under control parameters.
The radial profile is taken at the middle of the SMP membrane,
axially (i.e., z = (L5 – L4)/2). The dotted and dashed lines
represent the lumen-membrane and membrane PSA wall,
respectively.

158

4.17 Comparison of membrane hindrance factor (α) on percentage 
recoveries for LMP and SMP under control conditions.

160

4.18 Radial profile of glucose in the linear microdialysis probe
(LMP) with various perfusion flowrates under control
parameters. The radial profile is taken at the middle of the LMP
membrane, axially (i.e., z = (L2 – L1)/2). The dash-dot line
represents the membrane wall.

161

4.19 Radial profile of glucose in the shunt microdialysis probe (SMP)
with various perfusion flowrates under control parameters. The
radial profile is taken at the middle of the SMP membrane,
axially (i.e., z = (L5 – L4)/2). The dash-dot line represents the
membrane wall.

161

4.20 Comparison of membrane hindrance factor (α) on percentage 
recoveries for LMP and SMP under control parameters.
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4.21 Radial profile of glucose in the linear microdialysis probe
(LMP) with various probe length under control parameters. The
radial profile is display at the outlet lumen. The dash line
represents the membrane wall.
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4.22 Radial profile of glucose in the shunt microdialysis probe (SMP)
with various probe length under control parameters. The radial
profile is display at the outlet lumen. The dash line represents
the membrane wall.

165

4.23 Comparison of probe length on percentage recoveries for LMP
and SMP under control parameters.

166

5.1 Schematic of concentric microdialysis probe (CMP) domains
with respective dimensions and indication of fluid flow
direction. Dashed line denotes the axial symmetry line. For the
reason of clarity to include all subdomains, this diagram is not
scaled.

177

5.2 Mesh domains of the CMP (A). The mesh depicted here is
FEMLAB’s predefined ‘normal’ grid scheme.

187

5.3 Different levels of adaptive mesh schemes generated by
FEMLAB over our defined microdialysis probe domains. All
domains except the PSA, due to restriction in space, are featured
here. (A) represents FEMLAB’s very coarse mesh scheme, (B)
is normal scheme while (C) is very fine mesh scheme. Details of
the mesh properties are defined in Table 5.2.

188

5.4 Concentration profile (mol m-3) for various mesh schemes used.
Inset is an enlarged section of the dashed red circle, showing
how closes the obtained concentrations values are, when
different mesh schemes were used. Characteristics are based on
a simulation run for glucose under control conditions as
presented in Table 5.1. The properties of each mesh scheme are
listed in Table 5.2.

189

5.5 Fluid flow and mass transfer characteristic for the CMP. (a)
Profile of velocity field in the lumen region. (b) Diffusive flux
through the membrane and ECS regions. (c) Magnitude of
velocity field in lumen (m s-1). (d) Pressure distribution near the
inlet and outlet of the lumen (Pa).
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5.6 Concentration profile of glucose (mol m-3) in concentric
microdialysis probe. Characteristics are based on a simulation
run for glucose under control conditions as presented in Table
5.1.

194

5.7 Concentration profile of glucose (mol m-3) in concentric 197
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microdialysis probe. The plots are varied at different axial
distance in the lumen, membrane or cannula, and PSA. The
dash-dot lines in this figure represent the membrane walls.
Characteristics are based on a simulation run for glucose under
control conditions as presented in Table 5.1.

5.8 Surface plots of glucose concentration for concentric
microdialysis probe for various perfusion flow rates. (A) = 0.1
μL min-1, (B) = 1.0 μL min-1, (C) = 5.0 μL min-1. Red arrows
inside the lumen represent fluid velocity field, with initial
concentration, C0 = 5.55 mol m-3. Other parameters are as
defined in Table 5.1.

200

5.9 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various perfusion flow rates at
the middle of the CMP membrane, axially (i.e., z = (L7 – L9)/2 or
z = 0.45 cm). The black dotted and dash lines represent the
lumen-membrane and membrane-PSA interface, respectively.
Other parameters are based on a simulation run for glucose
under control conditions as presented in Table 5.1.
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5.10 Outlet of glucose concentration for CMP at various perfusion
flow rates. Other parameters are based on a simulation run for
glucose under control conditions as presented in Table 5.1.
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5.11 Surface plots of glucose concentration for concentric
microdialysis probe for various membrane thicknesses. (A) =
0.03 mm, (B) = 0.1 mm, (C) = 0.2 mm. Red arrows inside the
lumen represent fluid velocity field, with initial concentration,
C0 = 5.55 mol m-3. Other parameters are as defined in Table 5.1.

205

5.12 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various membrane thicknesses at
the middle of the CMP membrane, axially (i.e., z = (L7 – L9)/2 or
z = 0.45 cm). The black dotted and dashed lines represent the
lumen-membrane and membrane-PSA interface, respectively.
Other parameters are based on a simulation run for glucose
under control conditions as presented in Table 5.1.

206

5.13 Glucose recoveries for CMP with different membrane
thicknesses at different perfusion flow rates. Other parameters
are based on a simulation run for glucose under control
conditions as presented in Table 5.1.

207

5.14 Surface plots of glucose concentration for concentric
microdialysis probe for different membrane hindrance factors
(α). (A) α = 4, (B) α = 20, (C) α = 50. Red arrows inside the 
lumen represent fluid velocity field, with initial concentration,
C0 = 5.55 mol m-3. Other parameters are as defined in Table 5.1.
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5.15 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various membrane hindrance
factors at the middle of the CMP membrane, axially (i.e., z = (L7

– L9)/2 or z = 0.45 cm). The black dotted and dashed lines
represent the lumen-membrane and membrane-PSA interface,
respectively. Other parameters are based on a simulation run for
glucose under control conditions as presented in Table 5.1.
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5.16 Glucose recoveries for CMP with different membrane hindrance
factors at different perfusion flow rates. Other parameters are
based on a simulation run for glucose under control conditions
as presented in Table 5.1.

211

5.17 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various membrane lengths at the
middle of the CMP membrane, axially (i.e., z = (L7 – L9)/2). The
black dotted and dashed lines represent the lumen-membrane
and membrane-PSA interface, respectively. Other parameters are
based on a simulation run for glucose under control conditions
as presented in Table 5.1.

213

5.18 Glucose recoveries for CMP with different probe lengths at
different perfusion flow rates. Other parameters are based on a
simulation run for glucose under control conditions as presented
in Table 5.1.

213

5.19 Surface plots of glucose concentration for concentric
microdialysis probe for different outer lumen thicknesses. (A)
R9- R8 = 0.1 mm, (B) R9- R8 = 0.3 mm, (C) R9- R8 = 0.5 mm.
Red arrows inside the lumen represent fluid velocity field, with
initial concentration, C0 = 5.55 mol m-3. Other parameters are as
defined in Table 5.1.

215

5.20 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various outer lumen thicknesses
at the middle of the CMP membrane, axially (i.e., z = (L7 – L9)/2
or z = 0.45 cm). The black dotted and dashed lines represent the
lumen-membrane and membrane-PSA interface, respectively.
Other parameters are based on a simulation run for glucose
under control conditions as presented in Table 5.1.

216

5.21 Glucose recoveries for CMP with different outer lumen radius at
different perfusion flow rates. Other parameters are based on a
simulation run for glucose under control conditions as presented
in Table 5.1.

2.17

5.22 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various PSA thicknesses at the
middle of the CMP membrane, axially (i.e., z = (L7 – L9)/2 or z =
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0.45 cm). The black dotted and dashed lines represent the
lumen-membrane and membrane-PSA interface, respectively.
Other parameters are based on a simulation run for glucose
under control conditions as presented in Table 5.1. Plots are only
taken for r ≤ 1 mm for clarity. 

5.23 Glucose recoveries for CMP at different ECS thickness. C0 =
5.55 mol m-3. Other parameters are based on a simulation run for
glucose under control conditions as presented in Table 5.1.

220

5.24 Surface plots of glucose concentration for concentric
microdialysis probe for different tortuosities (τ). (A) τ = 1.0, (B) 
τ = 1.5, (C) τ = 2.0. Red arrows inside the lumen represent fluid 
velocity field, with initial concentration, C0 = 5.55 mol m-3.
Other parameters are as defined in Table 5.1.
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5.25 Concentration profile of glucose in concentric microdialysis
probe (CMP). The plots are for various PSA tortuosities at the
middle of the CMP membrane, axially (i.e., z = (L7 – L9)/2 or z =
0.45 cm). The black dotted and dashed lines represent the
lumen-membrane and membrane-PSA interface, respectively.
Other parameters are based on a simulation run for glucose
under control conditions as presented in Table 5.1.
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5.26 Glucose recoveries for CMP at different ECS tortuosity with two
types of perfusion flowrates. C0 = 5.55 mol m-3. Other
parameters are based on a simulation run for glucose under
control conditions as presented in Table 5.1.

224

5.27 Comparison of overall mass transfer coefficient (m s-1) values
(with thickness in the outer lumen is R9-R8) between BMF and
our current framework for different perfusion flow rates (µL
min-1). Other parameters were control values (as defined in
Table 5.1).

231

5.28 Relationship of dimensionless groups to different perfusion flow
rates (µL min-1) for our framework. The probe length was 3.0
mm, (i.e., control value). Dotted line represents a linearized
correlation of log Qd and log k. It is proposed that there may be
two linear correlations (represented by the dashed lines).

235

5.29 Overall mass transfer coefficient (ms-1) values for different
tortuosity (dimensionless) values. Two different flow rates from
our framework (0.2 µL min-1 and 2.0 µL min-1) and BMF
(independent of flow rate) are compared, at C0 = 5.55mol m-3.
Other parameters were control values (as defined in Table 5.1).
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5.30 Overall mass transfer coefficient (ms-1) values for different
membrane hindrance factor (dimensionless) values, calculated
from the current framework and BMF are compared, at C0 =
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