EFFICACY OF PLANT EXTRACTS TO CONTROL FUNGAL POST-HARVEST ROT

GHASSAN FARIS ATIYAH

UNIVERSITI MALAYSIA PERLIS

2014
EFFICACY OF PLANT EXTRACTS TO CONTROL FUNGAL POST-HARVEST ROT

by

Ghassan Faris Atiyah
(1041110454)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of [Bioprocess Engineering]
UNIVERSITI MALAYSIA PERLIS

2014
UNIVERSITI MALAYSIA PERLIS
DECLARATION OF THESIS

Author’s full name :
Date of birth :
Title :
Academic Session :

I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)

☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)

☐ OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)

the author, give permission to the UniMAP to reproduce this thesis in whole or in part for purpose of research or academic exchange only (except during a period of 3 years, if so requested above).

Certified by:

SIGNATURE

SIGNATURE OF SUPERVISOR

(NEW IC NO. / PASSPORT NO.)

NAME OF SUPERVISOR

Date: ____________________

Date: ____________________
In the name of Allah, the Beneficent, the Merciful
بسم الله الرحمن الرحيم

يا مُعَشَّر الْجِنّ وَالإِنس إنِّي أُسْتَطَعْتُمْ أَنْ تَنْفُذُوا مِنْ أَقْطَار
السَّمَوَاتِ وَالْأَرْضِ فَانْفُذُوا لََ تَنْفُذُونَ إِلََّ بِسُلْطَانِ

صدق الله العظيم

© This item is protected by original copyright
To my beloved mother, father and my brothers

Who gave me love, guidance and support

To the one who stood by me and made every effort to help me

My wife Rana

To my beloved kids

Ayat and Khilad
ACKNOWLEDGMENT

All praise is for Allah (SWT) who showers me the knowledge and strength to finish what I started even if it was harder than I thought. My sincere thank and deep gratitude to my beloved wife Rana for her support and encouragement, her care and patience, along years of study. Most heart felt gratitude to my lovely sweet kids Ayat and Khilad for their great love and prayers that cheered me up during hard times. Special thanks and great appreciation to my beloved my mother, father and all members of the family for their unconditional love, encouragement, and faith and even financial help throughout the years of my life.

I would like also to express my since gratitude to my supervisor Associate Professor Dr. Harbant Singh and Co-supervisor Dr. Mahomeed Syarhabil for their support, valuable ideas, motivation and encouragement during my study and during the preparation of this thesis. My special appreciation and thanks are extended to Dr. Qasim Al-Hashemi for this generous advice and help throughout my research.

I was so lucky to have a chance to be a student in the School of Bioprocess Engineering- University Malaysia Perlis (UinMAP) where I met a group of people including staff, lectures and professors who supported me and provided me with a friendly environment.
In brief, I would like to thank all who contributed directly prayers and moral support in the completion of my work. May Allah bless them and I pray for their well being.

Ghassan Faris Atiyah Al- Samarrai
Table of Contents

Acknowledgment

Table of Contents

List of Tables

List of Figures

List of Abbreviations

Abstract

Chapter 1 - Introduction

1.1 Problem statement

1.2 Scope of study

1.3 Objectives of the study

Chapter 2 - Literature Review

2.1 Review on Post-Harvest Fungi Disease in Citrus Fruit

2.2 Control of Postharvest Fungal Diseases of Citrus

2.3 Negative Impact of Fungicides

2.4 Plant Derivatives to Control Postharvest Diseases

2.4.1 Tropical Botanicals as Antifungal

2.5 Maintaining Postharvest Citrus with Plant Extracts

2.6 Toxicity Assay of Plant Extracts

2.7 Fruit Packaging to Increase Shelf-life in Citrus Fruits

2.8 Fruit Coating to Increase Shelf-life in Citrus Fruits

Chapter 3 - Methods and Materials

3.1 Screening Bioassay

3.1.1 Screening Antifungal Bioassay of Plant Extracts

3.1.1(a) Isolation and identification of pathogen

3.1.1(b) Selection of Plants

3.1.1(c) Preparation of Solvent for Extraction

3.1.1(d) Selection of Solvent for Extraction

3.1.1(e) Preparing Plant Extractions

3.1.1(f) Preparing Concentrations of Crude Plant Extracts

3.1.1(g) Antifungal Bioassay in vitro

3.1.1(h) Experimental

Characterization of Crude Plant Extracts

3.1.1(i) Antifungal Activity

3.1.1(j) Preparation of crude Plant Extracts

3.1.1(k) Isolation and identification of pathogen

3.1.1(l) Screening Antifungal Bioassay of Plant Extracts

3.1.1(m) Identification of Fungi based on Morphological

Characterization from single spore
ii Preparation of Extracts Amended Potato Dextrose Agar (PDA)

iii Determination of Anti-fungal Inhibition Activity

iv Statistical Analysis

3.1.2 Longevity Study of Plant Extracts

3.1.2(a) Longevity for Extracts under Different Condition

3.1.2(b) Statistical Analysis

3.1.3 Selection of Best Plants

3.2 Study Toxicity Assay of the Best Plant Extracts (LC50)

3.2.1 Preparation of Test Extracts

3.2.2 Brine Shrimp Test (BST) evaluation for bioassay

3.3 Post-harvest Studies

3.3.1 Improvement of Fruit Quality by Spraying Plant Extracts

3.3.1(a) Collection of Fruits

3.3.1(b) Preparation for Treatment Fruit with Different Concentrations

3.3.1(c) Statistical Analysis

3.3.2 Residues of Plant Extracts in Sprayed Fruits

3.3.2(a) Preparing and Treatment Fruits

3.3.2(b) Samples Preparation

3.3.2(c) GC-MS Analysis Method

3.3.2(d) Determine Residual of Plant Extracts in Fruits

3.3.3 Fruit Wrapping with Spraying Plant Extracts to Improve Fruit Quality

3.3.3(a) Preparing Fruits for the Wrapping

3.3.3(b) Statistical Analysis

3.3.4 Fruits Coating with Spraying Plant Extract to Improve Fruit Quality

3.3.4.(a) Preparation Solutions of Materials

3.3.4.(b) Preparing the Mixture for Coating

3.3.4.(c) Preparation for Treatment Fruit with different concentrations

3.3.4.(d) Parameters Post-harvest Study

i. Weight Loss

ii Total Soluble Solids

iii Ascorbic Acid

vi. Total Sugar
3.3.4.(e) Statistical Analysis

3.4 Characterization and Isolation of Bioactive Secondary Metabolites from the best antifungal extract Using Chromatographic Techniques

3.4.1 Phytochemical Screening Test for the Extracts

3.4.1(a) Test for Alkaloids (Hager’s test)

3.4.1(b) Test for Flavonoids (Ammonia test)

3.4.1(c) Test for Glycosides

3.4.1(d) Test for Phenols (Ferric Chloride test)

3.4.1(e) Test for Saponins (Froth test)

3.4.1(f) Test for Steroids

3.4.1(g) Test of Tannins (ferric chloride test)

3.4.1(h) Test for Terpenoids

3.4.2 Chromatographic Extraction Techniques Analysis

3.4.2(a) Plant Extracts Constituents and Fractionation

3.4.2(b) Thin Layer Chromatography (TLC)

3.4.2(c) Number of the Compounds in Fractions

3.4.2(e) Determination of Minimum Inhibitory Concentrations (MIC)

3.4.3 Column Chromatography (silica gel) Analysis

3.4.3 (a) Major -fraction activity Isolation

3.4.3(b) Sub-fraction Activity Isolation

3.4.3(c) Determination of Minimum Inhibitory Concentrations (MIC) and Toxicity of the Bioactive Compound

3.4.4 Liquid Chromatography Analysis

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Isolation and Identification of Pathogen in anti-fungal Bioassay of Plant Extracts

4.2 Effect of Plant Extracts in Growth of Fungi

4.3 Longevity Study of Plant Extracts

4.3.1 Selection of Best Plants

4.4 Biotoxicity of Selected Plant Extracts (Brine Shrimp Test) LC50.

4.5 Improvement Fruit Quality with Spraying Plant Extracts

4.5.1 Fungal Decay Index

4.5.1 Fruit Weight Loss (%)

4.5.1 Spoilage Fruits (%)

4.6 Residue of Plant Extracts in Fruits
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Fungicides permitted for use in export destination for citrus</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Maximum residue limits (MRLs) of fungicides in fruit safe for human health</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Some tropical plant botanicals with antimicrobial properties</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Categories Toxicity of fungicides</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Plant species under study in experiments</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Plant species under study in experiments</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Preparation of plant extracts concentrations</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Criteria for Fungal Inhibition</td>
<td>26</td>
</tr>
<tr>
<td>3.5 Percentage of infection fungal decay index</td>
<td>33</td>
</tr>
<tr>
<td>4.1 Effect of plant extracts(ppm) on inhibition colony diameter (cm) Penicillium digitatum and compare with controls [Guazatine and Water] in Petri dishes PDA inoculated and incubated at 25°C for 7 days</td>
<td>55</td>
</tr>
<tr>
<td>4.2 Effect of plant extracts (ppm) on inhibition colony diameter (cm) Aspergillus niger and compared with controls [Guazatine and Water] in Petri dishes PDA inoculated and incubated at 25°C for 7 days</td>
<td>57</td>
</tr>
<tr>
<td>4.3 Effect of plant extracts on inhibition colony diameter (cm) Fusarium sp and compared with controls [Guazatine and Water] in Petri dishes PDA inoculated and incubated at 25°C for 7 days.</td>
<td>60</td>
</tr>
<tr>
<td>4.4 Percentages fungal inhibition zone (%) against Penicillium digitatum, Aspergillus niger and Fusarium sp for 10 crude plant extract storage at 4°C and 85-90% for four weeks.</td>
<td>64</td>
</tr>
<tr>
<td>4.5 Percentages fungal inhibition zone (%) against Penicillium digitatum, Aspergillus niger and Fusarium sp for 10 crude plant extract storage at 25°C and 60-70 %RH for four weeks.</td>
<td>66</td>
</tr>
<tr>
<td>4.6 Percentages fungal inhibition zone (%) against Penicillium digitatum, Aspergillus niger and Fusarium sp for 10 crude plant extract storage at 32°C and 75-80% RH for four weeks.</td>
<td>69</td>
</tr>
<tr>
<td>4.7 Mortality of Larvae of Shrimp (%) in Brine Sharimp Test bioassay of plant extracts at different concentrations (640 to 5μg/ml) after 48 hour</td>
<td>71</td>
</tr>
<tr>
<td>4.8 Brine Shrimp Test (BST) toxicity (mg / L) of crude plant extracts under study</td>
<td>72</td>
</tr>
<tr>
<td>4.9 Effect spray plant extracts at different concentrations (2000 to 5000 ppm) on observe development of mycelium growth Penicillium digitatum, Aspergillus niger and Fusarium sp on the orange surface during storage for 21 days at 25°C±2 and 65-75% RH.</td>
<td>80</td>
</tr>
<tr>
<td>4.10 Effect sprays plant extrats of Cerebra odollam L. (pong-pong), Capsicum frutescence L (Chili), and Azadirachta indica L., (Neem), Cymbopogon nardus L... (Lemon grass) and Zingiber officinale L. (Ginger) extracts (2000 to 5000ppm) on weight loss% drying storage for 21 days at 25°C</td>
<td>84</td>
</tr>
</tbody>
</table>
±2°C and 65-75% RH

4.11 Effect of spray plant extract of Cerebra odollam L. (pong-pong), Capsicum frutescense L. (Chili), Azadirachta indica L. (Neem), Cymbopogon nardus L. (Lemon grass) and Zingiber officinale L. (Ginger) at 2000 to 5000ppm on spoilage fruits percentage (%) during storage for 21 days at 25 ± 2°C and 65-75% RH

4.12 Residue of plant extracts (mg/ Kg) in orange fruit after 3 weeks of spray.

4.13 Effect of spraying plant extracts at concentration 5000 ppm with wrap fruitsing three type of the biodegradable materials (Polylactic acid (PLA), Pectin and news paper) on fungal decay (%) on the orange surface at 25±2°C and RH 65-75% for 21 days.

4.14 Effect of fruit wrappings and spray plant extracts on the physiological weight loss (%) of orange fruits during storage at 25±2°C and 65-75 RH% for 21 days.

4.15 Effect of wrapper fruit and spray plant extracts on the shelf life (days) of orange during storage at 25±2°C and 65-75% RH for 21 days.

4.16 Effect of coating and wrapper fruit using biodegradable materials on weight loss (%) at 25±2°C and 65-75 % RH for 21 day

4.17 Effect of coating and packaging with biodegradable materials on total Soluble Solids (TSS %), under 25±2°C and 65-75 % RH for 21 days

4.18 Effect of coating and packaging fruit with biodegradable materials on Ascorbic Acid (mg/ 100ml juice) at 25±2°C and 65-75% RH for 21 days.

4.19 Effect of coating and packaging fruit with three biodegradable materials on Total sugar content (%) under 25±2°C and 65-75% RH for 21 days.

4.20 The analysis of phytochemicals in ethanol extract of C. odollam L

4.21 Retention factors (compounds) (RF) of fractions extracts from Cerebra odollam L. developed in (S1- Ethyl acetate, acetone and chloroform) and (S2- Methanol / water/ethyl acetate) solvents system on TLC plate

4.22 Minimum inhibitory concentration (MIC) mg/L of the potential solvent extracts of Cerebra odollam on fungal inhibition zone (cm) of Penicillium digitum, Aspergillus niger and Fusarium sp.

4.23 Minimum inhibitory concentration (MIC), of the fractions obtained from the ethanol extracts of Cerebra odollam L. using S1 as solvent system by silica gil column chromatography against Penicillium digitum, Aspergillus niger and Fusarium sp.

4.24 Minimum inhibitory concentration (MIC) and (LC50) for two compounds from ethanol extracts of Cerebra odollam against Penicillium digitum, Aspergillus niger and Fusarium sp.

4.25 Information active compound isolated from ethanol leaf of Cerebra odollam L.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Major citrus growing regions in world (Thomas, 2010).</td>
</tr>
<tr>
<td>3.1</td>
<td>Isolation of pure compound from plant</td>
</tr>
<tr>
<td>3.2</td>
<td>Extraction and fractionation process of the extracts</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect plant extracts (ppm) in inhibition Penicillium digitum compared with controls [Guazatine and Water] in Petri dishes PDA inoculated and incubated at 25°C for 7 days.</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect plant extracts (ppm) in inhibition Aspergillus niger compared with controls [Guazatine and Water] in Petri dishes PDA inoculated and incubated at 27°C for 7 days.</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect plant extracts (ppm) in inhibition Fusarium sp compared with controls [Guazatine and Water] in Petri dishes PDA inoculated and incubated at 27°C for 7 days.</td>
</tr>
<tr>
<td>4.4</td>
<td>Brine shrimp test (LC50) of the ethanol extract of Cerbera odollam L. in brine shrimp lethality bioassay</td>
</tr>
<tr>
<td>4.5</td>
<td>Brine shrimp test (LC50) of the ethanolic extract of Cymbopogon nardus L. in brine shrimp lethality bioassay</td>
</tr>
<tr>
<td>4.6</td>
<td>Brine shrimp test (LC50) of the ethanolic extract of Azadirachta indica L. in brine shrimp lethality bioassay</td>
</tr>
<tr>
<td>4.7</td>
<td>Brine shrimp test (LC50) of the ethanolic extract of Cymbopogon nardus L. in brine shrimp Lethality bioassay</td>
</tr>
<tr>
<td>4.8</td>
<td>Brine shrimp test (LC50) of the ethanolic extract of Zingiber officinale L. in brine shrimp lethality bioassay</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of spray plant extracts of Cerbera odollam L. (pong-pong), Capsicum frutescense L. (Chili), Azadirachta indica L., (Neem), Cymbopogon nardus L. (Lemon grass) and Zingiber officinale L. (Ginger) at 2000 to 5000ppm on fruit decay (%) on the orange surface during storage for 21 days at 25°C±2 and 65-75% RH.</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect spray plant extracts of Cerbera odollam L. (pong-pong), Capsicum frutescense L. (Chili), Azadirachta indica L., (Neem), Cymbopogon nardus L. (Lemon grass) and Zingiber officinale L. (Ginger) plant extract at 2000 to 5000ppm on weight loss (%) during storage for 21 days at 25±2 and 65-75% RH.</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect spray plant extracts of Cerbera odollam L. (pong-pong), Capsicum frutescense L. (Chili), Azadirachta indica L., (Neem), Cymbopogon nardus L. (Lemon grass) and Zingiber officinale L. (Ginger) plant extract at 2000 to 5000ppm on spoilage fruit (%) during storage for 21 days at 25±2°C and 65-75% RH.</td>
</tr>
</tbody>
</table>

© This item is protected by original copyright
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12.a</td>
<td>Mass Spectrum of Cerebra odollam L. in fruit after first week</td>
</tr>
<tr>
<td>4.12.b</td>
<td>Mass Spectrum plant extract of Capsicum frutescense L. in fruit after first weeks.</td>
</tr>
<tr>
<td>4.12.c</td>
<td>Mass Spectrum plant extract of Azadirachta indica L. in fruit after first week</td>
</tr>
<tr>
<td>4.12.d</td>
<td>Mass Spectrum plant extract of Cymbopogon nardus L in fruit after first week</td>
</tr>
<tr>
<td>4.12.e</td>
<td>Mass Spectrum plant extract of Zingiber officinale L. in fruit after first weeks</td>
</tr>
<tr>
<td>4.13</td>
<td>Observing the mean fruit decay of the fruit when wrapped with Polylactic acid wrapper and sprayed with different treatments and stored fruit in carton boxes at 25±2°C and 65-70% RH for 21 days</td>
</tr>
<tr>
<td>4.14</td>
<td>Observing the mean fruit decay of the fruit when wrapped with pectin wrapper and sprayed with different treatments and stored fruit in carton boxes at 25±2°C and 65-70% RH for 21 days</td>
</tr>
<tr>
<td>4.15</td>
<td>Observing the mean fruit decay of the fruit when wrapped with Newspaper wrapper and sprayed with different treatment and stored fruit in carton boxes at 25±2°C and 65-70% RH for 21 days</td>
</tr>
<tr>
<td>4.16</td>
<td>Effects of combining Polylactic acid, Pectin and Newspaper on percentage weight loss (%) of stored orange fruit at 25±2°C and 65-70% for 21 days</td>
</tr>
<tr>
<td>4.17</td>
<td>Effects Polylactic acid, Pectin and Newspaper wrapper and sprayed plant extract 5000ppm of Pong-pong on shelf life (days) for stored orange fruit at 25±2°C and 65-70 % RH for 21 days</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect coating and packaging fruit using biodegradable materials on loss weight (%) at 27°C and 65-70 % RH for 21 days</td>
</tr>
<tr>
<td>4.19</td>
<td>Effect coating and packaging fruit using biodegradable materials on total soluble solids (%) under 27°C and 65-70 % RH for 21 days</td>
</tr>
<tr>
<td>4.20</td>
<td>Effect of coating and packaging fruit using biodegradable materials on total Ascorbic Acid (mg/100ml juice) under 25°C and 65-70 % RH for 21 days</td>
</tr>
<tr>
<td>4.21</td>
<td>Effect of coating and packaging fruit using biodegradable materials on total Ascorbic Acid (mg/100ml juice) under 25°C and 65-70 % RH for 21 days</td>
</tr>
<tr>
<td>4.22</td>
<td>Isolation scheme of the antifungal compound of Cerebra odollam L.</td>
</tr>
<tr>
<td>4.23</td>
<td>Graphical illustration of LC50 of compound of ethanol Cerebra odollam in brine shrimp lethality bioassay</td>
</tr>
<tr>
<td>Page</td>
<td>Content</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>4.24</td>
<td>Mass Spectrum of FC7-1 (active compound)</td>
</tr>
<tr>
<td>4.25</td>
<td>Structural, elemental and mass composition (g/mol) of C30H48O8 (FC7-1)</td>
</tr>
</tbody>
</table>

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>BIA</td>
<td>Biopesticides Industry Alliance</td>
</tr>
<tr>
<td>GPP</td>
<td>Growing Plants for Pharmaceutical Production</td>
</tr>
<tr>
<td>LC50</td>
<td>Lethally Cytotoxicity</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>BST</td>
<td>Brine Shrimp Test</td>
</tr>
<tr>
<td>EUCAST</td>
<td>European Committee on Antimicrobial Susceptibility Testing</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MAP</td>
<td>Modified atmosphere packaging</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-layer chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography–mass spectrometry</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography mass spectrometry</td>
</tr>
<tr>
<td>MRLs</td>
<td>Maximum residue levels</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>PLA</td>
<td>Polylactic acid</td>
</tr>
</tbody>
</table>
Keberkesanan Ekstrak Tumbuhan untuk Mengawal Kulat Pereputan Selepas Tuaian

ABSTRAK

Penicillium digitatum, Aspergillus niger dan Fusarium Sp, agen-agen penyebab kulat hijau, Black rot dan Fusarium rot, patogen lepas tuai yang penting yang mengakibatkan kerugian yang serius dalam sitrus setiap tahun, selain daripada buah-buahan komersial yang lain. Kajian semasa lebih cenderung kepada pengaplikasian botani, sebagai alternatif untuk racun kulat sintetik menjalankan pemilihan anti-mikrob yang berbaik pada pengasingan anti-kompaun kulat yang aktif menggunakan analisis statistik yang berbaik dan ANOVA. Kajian ini juga fokus kepada kesan tetap daripada ekstrak tumbuhan terpilih dalam kawalan lepas-tuai buah reput selain daripada keberkesanan kos bagi tujuan komersial. Sepuluh ekstrak etanol (kepekatan 500-5000 ppm) Cerbera odollam L. (Pong-pong), Capsicum frutescense L. (Cili), Azadirachta indica L. (Semambu), Cymbopogon nardus L. (Serai), Zingiber officinale L. (Halia), Andrographis paniculata, L. (Chirayta hijau), Curcuma longa L. (Kunyit), Syzygyum aromaticum L. (Cengkeh), Murraya koenigii L. (Daun kari), Swietenia macrophyllai L. (Mahogani) telah menjalani ujian aktiviti anti-kulat bagi kulat hijau sitrus, ‘Black rot’ dan ‘Fusarium rot’ serta dibandingkan dengan racun kulat kawalan (Guazatine, 1000 ppm). Jangka hayat ekstrak tumbuhan mentah telah diikuti bergantung kepada aktiviti anti-kulat berdasarkan keadaan penyimpanan yang berbaik (peti sejuk, keadaan bilik, dan luar). Ekstrak terbaik dipilih berdasarkan ekstrak tumbuhan anti-mikrob yang menunjukkan perencatan kulat lebih daripada 70-90%, kestabilan yang lebih panjang dan keberkesanan di bawah keadaan simpanan yang berbaik. Ketoksikan (LC50) ekstrak anti-kulat terbaik ditentukan melalui Ujian 'brine shrimp' (BST). Analisis kromatografi GC-MS digunakan untuk menentukan baki ekstrak tumbuhan dalam buah-buahan yang disembur dengan ekstrak tumbuhan. Keberkesanan ekstrak tumbuhan (semburan) digandangkan dengan bahan-bahan pembalut mesra alam (asid Polylactic, pectin dan suratkhabar) telah ditentukan semasa penyimpanan/transit untuk mengawal pereputan patogen dengan menggunakan pembungkusan atmosfera yang diubahsuai (MAP) untuk meningkatkan jangka hayat dan kualiti buah-buahan semasa penyimpanan. Serta eksperimen lain dengan menambahkan lapisan (chitosan, kanji dan parafin minyak) bersama pembalut buah-buahan bagi meningkatkan lagi kualiti buah selain mengkaji. Ekstrak tumbuhan yang menunjukkan kesan paling baik dalam meningkatkan jangka hayat dan kualiti buah-buahan telah dijalankan analisis ‘biocompound’ dengan menggunakan kromatografi LC-MS . Ekstrak mentah dari Pong-pong dan Cili menunjukkan zon perencatan kulat dalam media PDA pada 3000ppm (kepekatan 100%), manakala Semambu, Serai, Halia mencatatkan lebih daripada (70%) perencatan kulat; tumbuh-tumbuhan lain menunjukkan kesan yang rendah, kurang daripada (50%) bagi kepekatan yang sama. Kajian jangka hayat menunjukkan ekstrak segar untuk semua tumbuh-tumbuhan memberikan keberkesanan
terbaik di bawah keadaan penyimpanan yang berbeza. Kajian jangka hayat ekstrak
tumbuhan segar di 3000ppm belajar di bawah keadaan yang berbeza direkodkan
perencatan tinggi dalam medium PDA selama 3 minggu apabila disimpan pada 4°C, 1
minggu apabila disimpan pada 25 °C, dan kurang dari 1 minggu (3 hari) apabila sampel
telah disimpan di luar pada ± 32°C.Lima ekstrak tumbuhan mentah dari Pong-pong, Cili,
Semambu, Serai dan Halia telah dipilih sebagai tumbuhan yang terbaik. Pong-pong dan
cili menghalang jangkitan secara menyeluruh pada 4000 dan 5000 ppm dan meningkatkan
jangka hayat buah-buahan selama lebih berbanding dengan buah-buahan tanpa rawatan
tiga minggu pada suhu bilik. LC50 nilai di bawah 2μg/ml dianggap beracun dan tidak
selamat untuk kegunaan manusia. Nila-nilai ekstrak tumbuhan LC50 adalah: Pong-pong
5μg/ml (rendah); cili -20 μg/ml (rendah); semambu -30 μg/ml (selamat); serai -473 μg /
ml (selamat) dan halia-495 μg / ml (selamat). Massa Spektrometri analisis menunjukkan
kesan sisa rendah dan tidak melebihi had sisa maksimum nilai MRL dalam buah dirawat
dengan ekstrak terbaik selepas pertama, kedua dan minggu ketiga pada semburan.
Pembalut dan buah-buahan yang disalut menunjukkan peningkatan jangka hayat dan
penyusutan berat buah-buahan yang disimpan pada suhu bilik berbanding dengan buah-
buahan tanpa rawatan.Cerebera menghasilkan keputusan yang terbaik dalam eksperimen
dan ekstraknya telah dipilih untuk mengenalpasti bio-kompaun anti-kulat yang aktif
daripada ekstrak eter. Ekstrak tumbuhan pong-pong digandingkan dengan buah-buahan
salutan (chitosan, kanji dan minyak parafin) an penurunan berat badan dan jangka hayat
yang meningkat untuk buah-buahan yang disimpan pada suhu bilik (25±oC) berbanding
dengan buah-buahan yang tidak dirawat. Alpha glikosid (4, 6 Benzylidene -10-Methyl -
2O-(2346 Tetra -O- Acetyl- Beta-Glucosyl) sebatian baru daripada ekstrak daun Cerebra
odollam L.untuk anti-kulat. Pembalut dan buah-buahan yang disalut menunjukkan
peningkatan jangka hayat dan penyusutan berat buah-buahan yang disimpan pada suhu
bilik berbanding dengan buah-buahan tanpa rawatan
Efficacy of plant extracts to control post-harvest fungal rot

ABSTRACT
Fungicides are widely used in conventional agriculture to control plant diseases. Prolonged usage often poses health problems as the modern society is becoming more health-conscious because of their harmful residual effects. The diseases are currently managed with synthetic fungicides but there is, however, a growing global interest on their replacement with other alternatives such as environment-friendly biopesticides, such as use of botanicals or biological control. *Penicillium digitatum, Aspergillus niger* and *Fusarium*, the causal agents of citrus green mold, black rot and brown rot, are important post-harvest pathogens that cause serious losses in citrus annually, besides affections other commercial fruits. The current study tends to the application of botanical as alternative to synthetic fungicides carrying out their antimicrobial screening, longevity study, toxicology, post-harvest study included spraying plant extracts, resident effect, wrapping and coating using different statistical analysis and ANOVA. The research also focus on the selected plant extracts in control post-harvest fruit rot besides the cost-effectiveness for commercial purpose. Then selection of the best anti-fungal plant extract on the isolation of its active anti-fungal compound using chromatography analysis. Ten ethanol extracts (concentrations 500-5000 ppm) of *Cerbera odollam* L. (Pong-pong), *Capsicum frutescence* L. (Chili), *Azadirachta indica* L. (Neem), *Cymbopogon nardus* L. (Lemon grass), *Zingiber officinale* L. (Ginger), *Andrographis paniculata* L. (Green chirayta), *Curcuma longa* L. (Turmeric), *Syzygyum aromaticum* L. (Clove), *Murraya koenigii* L. (Curry leaf), *Swietenia macrophyllai* L. (Mahogani), were tested for their anti-fungal activity for citrus green mold, black rot and brown rot and compared with the control fungicide (Guazatine). Longevity of crude plant extracts was studied depending on their anti-fungi activity under different storage conditions (Refrigerator, Room conditions, and Outside) for four weeks. The best plant extracts were selected of plants under study based their on anti-microbial activity showing more than 70-90% fungal inhibition and longer stability and efficacy under different storage conditions. The toxicity (LC50) of the best anti-fungal extracts was determined by the Brine Shrimp Test (BST). Chromatography analysis GC-MS was used to determine the residual effect in fruits that were sprayed with plant extracts. Efficacy of the selected best plant extract incooperated with biodegradable materials wrappers (Polylactic acid, pectin and newspaper) was determined during storage at room temperature (±25°C) to control fruit-pathogen decay under modified atmosphere packaging (MAP) to increase shelf life and improve the fruit quality and an another experiment in cooperating coating (chitosan, starch and oil paraffin) with fruit wrappers to further increase the fruit quality. The plant extract that exhibited best result to increase the shelf life and fruit quality was subjected to biocompound analysis using chromatography LC-MS. Crude extracts from pong-pong and chili showed fungal inhibition zone in PDA medium at 3000 ppm (c.100%), while neem, lemon grass, ginger recorded more than (70%) fungus inhibition; other plants showed low effect less than (50%) for the same concentration. Longevity study showed the fresh extract solution for all plants under study gave best effectiveness of crude plant extracts stored under different conditions. Longevity study of fresh plant extracts under different condition recorded high inhibition in PDA medium for 3 weeks when stored at 4°C, 1 week when stored at 25°C, and less than 1 week (3days) when samples were kept outside at ±32°C. In vivo, the fruits sprayed with fresh plants extract of neem, pong-pong and chili completely prevented infection at 4000 and 5000 ppm and increased shelf-life of fruit compared with untreated.
fruit by three week at room temperature. Five crude plant extracts from pong-pong, chili, neem, lemon grass and Ginger were selected as the best plants based on their anti-microbial activity showing more than 70-90% fungal inhibition and longer stability and efficacy under different storage conditions. LC50 values below 2µg/ml are considered to be toxic and unsafe for human consumption. The LC50 values of the plant extracts were: pong-pong was 5µg/ml (low but safe); chili: 20 µg/ml (low but safe); neem: 30 µg/ml (safe); lemon grass: 473 µg/ml (safe) and ginger: 495 µg/ml (safe). Mass Spectrometry analyses show low residual effect and not exceed maximum residue limits MRL values in fruit treated with the best extracts after first, second and third week on the spray. Five plants extracts namely pong-pong, chili, neem, lemon grass and ginger incorporated with fruit wrappers fruit showed increased shelf life and decreased weigh loss for fruits stored at room temperature compared with untreated fruit. Plant extract of pong-pong incorporated with coating fruit (chitosan, starch and oil paraffin) showed decreased weigh loss and increased shelf life for fruits stored at room temperature (±25°C) as compared with untreated fruit. *Cerebera* produced the best results in the experiments and its extract was selected for the identification of active anti-fungal biocompounds from. Alpha Glycoside (4, 6 Benzylidene -1O-Methyl -2O-(2346 Tetra-O-Acetyl-Betad -Glucosyl), a new compound from the leaf extract of *Cerebra odollam* L. was identified for its antifungal action.
CHAPTER 1
INTRODUCTION

Citrus is considered to be one of the major fruit crops produced in the world. Citrus fruits such as orange, lemons, pummelos, grapefruits and others are grown widely as fresh fruit for commercial purposes throughout the world in fifty countries (Fig1.1), such as the America, Asia, Medial East region, Australia and Spain (Manuel and Fred, 2008; FAO, 2011). Citrus fruits contain a variety of vitamins (B6, E2 and C) minerals, fiber, and phytochemicals such as carotenoids, flavonoids, and limonoid, which appear to have biological activities and health benefits (Citrus Australia, 2010; Codoner-Franch, 2010).

Fig1.1 Major citrus growing regions in world (Thomas, 2010).
The citrus industry has its commercial importance due to its influence in generating jobs for millions of people through harvesting, handling, transportation, storage and marketing. The citrus fruit industry is rapidly growing due to population increase and improved economic conditions together with the advance of agricultural sciences and technology of by-products and increased awareness of the nutritious value of the fruit (Elyatem, 2008). However, although production and area in the Asia region are increasing compared to the Western countries, the post-harvest handling and processing practices coupled with high temperature ±30°C and humidity 75-90% have contributed in limiting the postharvest life of citrus fruits (Pratibha et al., 2011). The softening of the fruits upon ripening and damage in the store undergo a series of physiological during transport and packaging. These factors also expose the fruits to post-harvest damage by pathogens. Post-harvest diseases attack the citrus fruits and can cause huge economic losses ranging between 15- 25% during transportation, storage and marketing in countries citrus-producing in Asia (Post-harvest technology in citrus, 2009). Ramu et al., (2011) reported 45-50% losses caused by fungal rot under poor storage after-harvest.

The citrus fruits can be attacked by many pathogens that can affect the fruits post-harvest. The most important pathogens affecting the citrus are: Alteraria spp., Penicillium spp., Aspergillus spp., Rhizopus and Fusarium sp. (Josepha et al., 2008).

Fungal post-harvest rot in citrus is currently being managed with synthetic fungicides chemicals, radiation, hot-water treatments (Cunningham, 2008). However, there is a growing global concern over the use of synthetic fungicides chemicals on food crops because of the continuous exposure of man to low levels of fungicides residue through his diet. In addition fungicides have on impact on the environment through accumulation in soil and water and
These aspects have led to the implementation of more restrictive legislations regarding the maximum residue levels (MRL) of chemical residues in fruits exported particularly to world markets (Pal and McSpadden, 2006). The application of fungicides often leads to new fungicide-resistant strains as in P. digitatum (William, 2009). Keeping in view of these developments, the recent trend in disease management focus on using natural plant products as all an alternative to fungicides. The natural plant products (botanicals) are generally safer as they degenerate fast thus avoiding residue effect (Barkai-Golan, 2011). The bioactive pathogen-inhibiting compounds may include-compounds flavonoids, glycosides, phenols and terpenoids (Pramila et al., 2008). The previous studies conducted by (Heam et al., 2009; Ibtesam et al., 2011; Adetunji et al., 2012; Maria et al., 2012) reported reduction in fungal inhibition zone in lab condition using plant extract of neem, lime, thyme, camphor Shiraz thyme, Aloe and garlic against Green and Blue mould caused by Penicillium digitatum and Penicillium italicum on citrus fruits.

1.1 Problem Statement

Losses in fruit industry due to post-harvest rot fungi may occur at any time during post-harvest handling, from harvest to consumption. When estimating post-harvest fungi rot losses, it is important to consider reductions in fruit quality, cost of harvesting, packaging and transport, and storage facilities. Beside economic considerations, it is important to be aware that diseased product poses a potential health risk, since a number of fungal genera such as Pencillium, Alternaria and Fusarium are known to produce mycotoxins under certain conditions (Pitt and Hocking, 2009). The use of synthetic fungicides effects to the environment such as their residue effect can be harmful to human health, besides increased accumulation in water, soil, and fruit besides the elimination of the natural enemies of the