Desalination and Water Treatment, 2015, pages 12

Removal of Ni(II), Zn(II) and Pb(II) from aqueous solutions using cation-exchange

resin in fixed-bed column

Abstract

Breakthrough curves for the removal of Ni(II), Zn(II), and Pb(II) from aqueous solutions using

cation exchange resin (Dowex 50W) were determined at dynamic conditions in a fixed-bed

column under ambient temperature. The experiments and data obtained were designed and

analyzed using response surface methodology, respectively. Three operating parameters: flow

rate (15-25 mL min⁻¹), pH (3-9), and bed height (3-5 cm) were investigated. Fixed-bed

adsorption models namely Thomas model and Bohart-Adam model were adopted to describe

the dynamics of metal adsorption in the column. The obtained experimental data were fitted to

these models based on the kinetic constant k_{BA}(mg min cm⁻³), k_{TH} (cm³ mg⁻¹ min), the maximum

amount of metal exchange N₀ (mg cm⁻³), and the maximum adsorption capacities q_tm (mg),

accordingly. The Thomas model was found to best fit all the experimental conditions studied

with correlation coefficients of 0.91, 0.97, and 0.92 for Ni(II), Zn(II), and Pb(II), respectively.

Keywords

Bohart-Adam model; Cation exchange resins; Heavy metal; Thomas model