

SELF-HARMONICS SUPPRESSION RECTENNA FOR WIRELESS POWER HARVESTING

ROSEMIZI BIN ABD RAHIM (1040810488)

By

A thesis submitted In fulfilment of the requirements for the degree of Doctor of Philosophy (Communication Engineering)

School of Computer and Communication Engineering UNIVERSITY MALAYSIA PERLIS

2014

DECLARATION OF THESIS				
Authors Full Name : ROSEMIZI BIN ABD RAHIM				
Date of birth	:	09 NOVEMBER 1976		
Title	:	SELF-HARMONICS SUPPRESSION RECTENNA FOR WIRELESS POWER HARVESTING		
Academic Session	:	2010/2011		
I. hereby declare tha	t this	thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and		
to be placed at the U	nivers	ity library. This thesis is classified as :		
CONFIDENTIAL	\square	(Contains confidential information under the Official Secret Act 1972)		
RESTRICTED		(Contains restricted information as specified by the organization where research was done)		
OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)				
I, the author, give per part of the purpose o so requested above).	rmissio of rese	on to the Universiti Malaysia Perlis to reproduce this thesis in whole or in arch or academic exchange only (except during a period of years, if		
Certified by				
SIGNATI	URE	SIGNATURE OF SUPERVISOR		
761109-02	2-5321	PROFESSOR DR. SYED IDRIS SYED HASSAN		
(PASSPORT NO. /	(PASSPORT NO. / NEW IC NO.) NAME OF SUPERVISOR			
Date: Date:				

NOTES: * If there is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

GRADUATE SCHOOL UNIVERSITY MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from the Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of material in this thesis whole or in part should be addressed to

Dean of Graduate School

item Universiti Malaysia Perlis (UniMAP)

No. 112 & 114, Tingkat 1, Blok A, Taman Pertiwi Indah,

Jalan Kangar-Alor Setar,

Seriab, 01000 Kangar, Perlis.

Acknowledgement

Bismillah ir-Rahman ir-Rahim, first of all, I present my gratitude to the Most Gracious and Most Merciful for the infinite mercy and destiny showered on me that this work is finally completed and successful, also in every other countless aspect of life.

To my parents, I owe them love and care, respect and honour for all the hardship, love and affection, guidance and motivation, advice and warning since my early days of childhood up to this point of my life and what has to come in future.

To my supervisor, Prof Dr. Syed Idris Syed Hassan and co-supervisor, Prof Madya Dr. Mohd Fareq Abd Malek, many thanks for the guidance, assistance and support in handling this work.

To my wife, Junita Mohd Nordin and children, thanks, love and hug for your pray and patience, understanding and concern, smile and laughter.

Thanks also to my parent-in-law, for their patience, help and support throughout my long journey.

I wish to thanks to the management of the University with the opportunity given to complete my studies.

And finally all my friends, thanks for all the cheers, motivation and advice.

TABLE OF CONTENTS

		PAGE
THESIS	S DECLARATION	i
PERMI	SSION TO USE	ii
ACKNO	DWLEDGEMENT	iii
TABLE	OF CONTENTS	iv
LIST O	FFIGURES	ix
LIST O	FABBREVIATIONS	xvii
LIST O	F SYMBOLS	xix
ABSTR	AK (BAHASA MELAYU)	xxi
ABSTR	ACT (ENGLISH)	xxii
	xe ^C	
СНАРТ	ER 1 INTRODUCTION	
1.1	Overview	1
1.2	Problem Statement and Motivation	7
1.3	Objectives of the Project	8
1.4 ©	Scope of Work	9
1.5	Thesis Organization	10
СНАРТ	ER 2 LITERATURE REVIEW	
2.1	Introduction	11
2.2	Wireless Power Harvesting Background	11
2.3	Rectenna Background	13
2.4	Review of Rectenna Design	17

2.4.1 Harmonic Filter Circuit	18
2.4.1.1 Low Pass Filter	19
2.4.1.2 Band Stop/Reject Filter	22
2.4.2 Harmonic Suppression Antenna	26
2.4.2.1 Shorting-Pin Antenna	27
2.4.2.2 Circular Slot Antenna	29
2.4.2.3 Coplanar Waveguide (CPW) Antenna	32
2.4.2.4 Metamaterial Structure	35
2.4.2.5 Defected ground Structure (DGS)	36
2.4.2.6 Multilayer Substrate	37
2.4.2.7 Modified Patch Shape Structure	39
2.4.2.8 Photonic Band Gap (PBG)	43
2.4.2.9 Circularly Polarized	44
2.4.2.10 Dual-Circularly Polarized	46
2.4.3 Impedance Transformer	48
2.4.4 Dual-Band Rectenna	51
2.4.5 Patch Array Rectenna	53
2.4.6 Dual-Diode Rectenna	54

CHAPTER 3 METHODOLOGY

3.1	Introduction	57
3.2	Antenna Design Methodology	60
	3.2.1 Linearly Polarized Microstrip Patch Antenna	62

3.2.1.1 Mathematical Calculation	62
3.2.1.1.1 Rectangular Microstrip Patch Antenna	63
3.2.1.1.2 Circular Microstrip Patch Antenna	64
3.2.1.1.3 Microstrip Feeding Technique	65
3.2.1.2 Simulation of the Basic Patch Antenna	66
3.2.1.2.1 Self-Harmonics Suppression Technique	68
3.2.1.3 Self-Harmonic Suppression Patch Antenna Prototype	70
3.2.2 Circularly Polarized Microstrip Patch Antenna	71
3.2.2.1 Nearly-Square Patch Shape	72
3.2.2.2 Elliptical Patch Shape	73
3.2.2.3 Self-Harmonics Suppression Technique	74
3.2.2.3.1 Self-Harmonics Suppression Nearly-Square Patch Antenna	74
3.2.2.3.2 Self-Harmonics Suppression Elliptical Shape Patch Antenna	75
3.2.2.4 Self-Harmonic Suppression Circularly Polarized Patch Antenna Prototype	76
3.2.3 Patch Array Antenna	77
3.2.3.1 Self-Harmonic Suppression Nearly Square Patch Array Antenna	78
3.2.3.2 Self-Harmonic Suppression Elliptical Shape Patch Array Antenna	78
3.2.3.3 Self-harmonics Suppression Patch Array Antenna Prototype	80
3.2.4 Antenna Measurement	81
RF-to-DC Rectifier Design	82

3.3

3.3.1	Single Diode Rectifier	84
3.3.2	Voltage Doubler Rectifier	89
3.3.3	Voltage Multiplier Rectifier	92
3.3.4	RF-to-DC Rectifier Prototype	94
3.3.5	RF-to-DC Rectifier Measurement	95
Wirele	ess Power Transfer Experiment	96
Summ	ary of the Chapter	97
TER 4	RESULTS AND DISCUSSION	
Introdu	uction	98
Self-H	armonic Suppression Microstrip Patch Antenna	98
4.2.1	Linearly Polarized Microstrip Patch Antenna	100
	4.2.1.1 Rectangular Patch antenna	100
	4.2.1.2 Circular Patch Antenna	109
4.2.2	Circularly Polarized Microstrip Patch Antenna	116
in!	4.2.2.1 Nearly-Square Patch Shape	116
	4.2.2.2 Elliptical Patch Shape	124
4.2.3	Self-Harmonic Suppression Microstrip Patch Array Antenna	131
4	2.3.1 Nearly-Square Shape Patch Array Antenna	131
	4.2.3.2 Elliptical Shape Patch Array Antenna	138
4.2.4	RF-to-DC Rectifier	144
	4.2.4.1 Single Diode Rectifier	144
	4.2.4.2 Voltage Doubler Rectifier	147
	3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Wirele Summ TER 4 Introdu Self-H 4.2.1 4.2.2 4.2.3 4.2.3	 3.3.1 Single Diode Rectifier 3.3.2 Voltage Doubler Rectifier 3.3.3 Voltage Multiplier Rectifier 3.3.4 RF-to-DC Rectifier Prototype 3.5 RF-to-DC Rectifier Measurement Wireless Power Transfer Experiment Summary of the Chapter TER 4 RESULTS AND DISCUSSION Introduction Self-Harmonic Suppression Microstrip Patch Antenna 4.2.1 Linearly Polarized Microstrip Patch Antenna 4.2.1.2 Circular Patch Antenna 4.2.2 Circular Patch Antenna 4.2.2.1 Nearly-Square Patch Shape 4.2.3 Self-Harmonic Suppression Microstrip Patch Antenna 4.2.3.2 Elliptical Patch Shape 4.2.3.2 Elliptical Shape Patch Array Antenna 4.2.4 RF-to-DC Rectifier 4.2.4.1 Single Diode Rectifier 4.2.4.2 Voltage Doubler Rectifier

	4.2.4.3 Voltage Multiplier	148
	4.2.4.4 RF-to-DC Measurement	150
4.3	Wireless Power Harvesting Experimental Work	151
4.4	Summary of the Chapter	156
СНАР	FER 5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES	
5.1	Conclusion	157
5.2	Achievement of the Research	158
5.3	Recommendations for Future Studies	159
REFFI	ERENCES *ected by	162
PAPE	RS PUBLICATIONS	175
C	Thistemist	

LIST OF FIGURES

NO.		PAGE
1.1	Block diagram of a wireless power transmission system	3
2.1	Block schematic of a rectenna system	13
2.2	Block diagram of a rectenna with harmonic suppression antenna	15
2.3	Block diagram of an array of rectenna system at different frequencies	17
2.4	The configuration of an oscillating rectenna	19
2.5	The configuration of the compact dual-frequency rectenna	20
2.6	The configuration of the aperture coupled staked microstrip patch rectenna	21
2.7	The configuration of the dipole rectenna	21
2.8	Block diagram of DRLA and the spatial orientation	22
2.9	The DRLA travelling-wave array with BRF and CPS to microstrip balun	23
2.10	The configuration of two nested microstrip-fed shorted annular ring-slot antenna	24
2.11	The configuration of the FG-CPW rectenna	25
2.12	A harmonics suppression microstrip slot antenna using a wiggly line	26
2.13	The distribution of modes before and after the shorting pin at the centre of the patch	28
2.14	Patch antenna with shorting pin	29
2.15	A circular sector microstrip antenna for a high efficiency class-F power amplifier	30
2.16	Rectenna with a microstrip circular sector antenna	30
2.17	The configuration of T-shaped slot patch antenna	31

2.18	The geometry and the fabricated of the CPW-feed circular slot antenna	32
2.19	The H-shaped slot antenna with an open-ended CPW-fed	33
2.20	The open-ended ungrounded CPW-fed slot antenna	34
2.21	Harmonic suppression CPW-fed bow-tie antenna	34
2.22	The prototype of the GPS L1 rectenna	35
2.23	The prototype of the harmonic suppression microstrip antenna with shunt-capacitor metamaterial	36
2.24	The configuration of the harmonic suppression microstrip patch antenna using the Koch-shaped DGS	36
2.25	Proximity couple feeding line and DGS	37
2.26	Proximity feeding and mushroom metal connected to the ground plane	38
2.27	The configuration of harmonics suppression rectenna by SRRs technique	39
2.28	The configuration of an H-shaped patch antenna	40
2.29	The configuration of the inset feed U-slot microstrip patch antenna	40
2.30	The configuration of a meander slot antenna	41
2.31	The configuration of a modified dual slot antenna	41
2.32	The geometry and fabricated unbalanced circular slot structure rectenna	42
2.33	The geometry of the folded dipole rectenna	42
2.34	The configuration of the periodical slot structure below the patch and feeding line	43

2.35	The configuration of 1-D DGS under the feeding line	43
2.36	The configuration of the CP integrated rectenna	44
2.37	The configuration of a circularly polarized rectenna	45
2.38	The configuration and the equivalent circuit of the CP antenna	46
2.39	Three layer, dual input for dual circularly polarized patch rectenna	47
2.40	The configuration of an antenna coupled with a microstrip line by an aperture in the ground plane	48
2.41	The configuration and the analysis model of the bridge RF rectifier with an impedance transformer	49
2.42	The layout of the proposed SDT and PDT transformer	50
2.43	The configuration of the dual band rectenna	51
2.44	Folded dipole rectenna	52
2.45	The configuration of an array antenna using both-sided MIC technology	53
2.46	The configuration of the flexible dipole rectenna	54
2.47	The configuration of dual-diode rectenna	55
3.1	Flow chart of the proposed self-harmonic suppression rectenna design methodology	59
3.2	Flow chart of the proposed self-harmonic suppression microstrip patch antenna design methodology	61
3.3	Dimension of basic rectangular patch antenna	62
3.4	Dimensions of the circular disk microstrip patch antenna	64

3.5	The geometry of the microstrip patch antenna structure plotted in CST simulator	67
3.6	Geometry of the proposed self-harmonic suppression rectangular patch antenna	69
3.7	The proposed layout geometry for self-harmonic suppression circular microstrip patch antenna	70
3.8	The fabricated prototype of the proposed self-harmonic suppression rectangular microstrip patch antenna	71
3.9	The fabricated prototype of the proposed self-harmonic suppression circular microstrip patch antenna	71
3.10	A perturbation segment of the rectangular patch antenna	73
3.11	The perturbation segment of the basic circular shape patch antenna	73
3.12	Geometry of a self-harmonic suppression nearly-square circularly polarized microstrip patch antenna	75
3.13	Self-harmonic suppression circularly polarized elliptical shape microstrip patch antenna geometry	76
3.14	The fabricated prototype of self-harmonic suppression nearly square microstrip patch antenna	77
^{3.15} C	The fabricated prototype of self-harmonic suppression elliptical shape microstrip patch antenna	77
3.16	The geometry of a proposed dual circular polarization self- harmonic suppression circularly polarized nearly square patch array antenna	79
3.17	The geometry of the proposed self-harmonic suppression circularly polarized elliptical shape patch array antenna	80
3.18	The fabricated prototype of dual circular polarization self-harmonic suppression circularly polarized microstrip patch array antenna	81

The fabricated prototype of the self-harmonic suppression elliptical shape microstrip patch array antenna	81
Schematic of the antenna measurement setup	81
Flow chart of the rectifier design methodology	82
Single diode shunt-mounted RF-to-DC rectifier	85
Single diode series-mounted RF-to-DC rectifier	85
The transient waveform of a single diode shunt-mounted rectifier	86
The transient waveform of a single diode series-mounted rectifier	86
Schematic of the proposed single diode shunt mounted rectifier	87
Schematic of the proposed single diode series mounted rectifier	88
Voltage Doubler Rectifier	89
The transient waveform of a voltage doubler rectifier	90
Schematic of proposed voltage doubler rectifier	95
The N-stage voltage multiplier rectifier	92
Schematic of the proposed voltage quadrupler multiplier	93
The fabricated prototype of the proposed rectifier circuits	94
The measurement setup for RF-to-DC rectifier	95
A sample of prototype of the proposed rectenna system	96
Wireless power transmission system measurement setup	97
Return loss of the basic rectangular patch antenna	101
Return loss of the rectangular patch antenna after DGS technique	102
	The fabricated prototype of the self-harmonic suppression elliptical shape microstrip patch array antenna Schematic of the antenna measurement setup Flow chart of the rectifier design methodology Single diode shunt-mounted RF-to-DC rectifier Single diode series-mounted RF-to-DC rectifier The transient waveform of a single diode shunt-mounted rectifier The transient waveform of a single diode series mounted rectifier Schematic of the proposed single diode shunt mounted rectifier Schematic of the proposed single diode series mounted rectifier Voltage Doubler Rectifier The transient waveform of a voltage doubler rectifier Schematic of proposed voltage doubler rectifier Schematic of proposed voltage doubler rectifier The N-stage voltage multiplier rectifier The N-stage voltage multiplier rectifier A sample of prototype of the proposed rectifier circuits The measurement setup for RF-to-DC rectifier A sample of prototype of the proposed rectenna system Wireless power transmission system measurement setup Return loss of the basic rectangular patch antenna Return loss of the rectangular patch antenna after DGS technique

4.3	Return loss of the proposed self-harmonic suppression rectangular patch antenna	104
4.4	The Smith Chart of the proposed rectangular patch antenna	105
4.5	The flow of current on the surface of the proposed rectangular patch antenna at the related frequencies	106
4.6	The simulated 3D farfield of the proposed rectangular patch antenna	107
4.7	The 1D radiation pattern of the proposed rectangular patch antenna	108
4.8	Return loss of the basic circular patch antenna	109
4.9	Return loss of the basic circular patch antenna with DGS	110
4.10	The return loss of the proposed self-harmonic suppression circular patch antenna	111
4.11	Smith Chart of the circular patch antenna	112
4.12	Simulated plot of the surface current on the proposed circular patch antenna	113
4.13	The simulated 3D Farfield radiation pattern for the circular patch antenna	114
4.14	The 1D radiation pattern of the proposed circular patch antenna	115
4.15	The return loss of the proposed self-harmonic suppression nearly- square circularly polarized patch antenna	117
4.16	The simulated input impedance of the proposed nearly-square patch antenna	118
4.17	Simulation of the surface current on the nearly-square patch antenna	119
4.18	The simulated axial ratio of the proposed nearly-square microstrip patch antenna	120

4.19	The simulated plot of E-field fundamental mode of the proposed nearly-square microstrip patch antenna	121
4.20	The simulated 3D farfield radiation pattern of the proposed antenna	122
4.21	The 1D radiation pattern of the proposed nearly-square patch antenna	123
4.22	Return loss of the proposed elliptical shape microstrip patch antenna	125
4.23	The simulated input impedance of the proposed elliptical shape patch antenna	126
4.24	The simulated surface current on the proposed elliptical shape patch antenna	127
4.25	The simulated axial ratio of the proposed elliptical patch antenna	128
4.26	The simulated plot of E-field fundamental mode of the proposed elliptical shape microstrip patch antenna	128
4.27	The simulated 3D farfield radiation pattern of the proposed elliptical shape patch antenna	129
4.28	The 1D radiation pattern of the proposed elliptical shape patch antenna	130
4.29	The return loss of the proposed nearly-square patch array antenna	132
4.30	The simulated input impedance of the proposed nearly-square patch array antenna	133
4.31	The simulated surface current on the nearly-square patch array antenna at the related frequencies	134
4.32	The simulated axial ratio of the proposed nearly-square patch array antenna	135

4.33	The simulated 3D Farfield radiation pattern of the proposed nearly- square patch array antenna	136
4.34	The 1D radiation pattern of the proposed dual circularly polarized self-harmonic suppression microstrip patch antenna	137
4.35	Return loss of the proposed self-harmonic suppression elliptical shape patch array antenna	138
4.36	The simulated input impedance of the proposed elliptical shape array antenna	139
4.37	The simulated surface current on the elliptical shape array antenna	140
4.38	The simulated axial ratio of teh elliptical shape array antenna	141
4.39	The simulated 3D farfield radiation pattern of the proposed antenna	142
4.40	The 1D radiation pattern of the proposed elliptical shape patch array antenna	143
4.41	The Simulated S_{11} vs LSSP_frequency of the single diode shunt mounted configuration	145
4.42	The Simulated S_{11} vs input power of the single diode shunt mounted configuration	145
4.43	The Simulated S_{11} vs LSSP_frequency of the single diode series mounted configuration	146
4.44	The Simulated S_{11} vs input power of the single diode series mounted configuration	146
4.45	The Simulated S_{11} vs LSSP_frequency of the voltage doubler rectifier	147
4.46	The Simulated S_{11} vs. input power of the voltage doubler rectifier	1.40
4.47	The Simulated LSSP_S ₁₁ vs LSSP_frequency of the voltage quadrupler multiplier	148 149

4.48	The Simulated LSSP_ S_{11} vs. input power of the voltage quadrupler multiplier	145
4.49	The measured output DC voltage of the proposed rectifiers	150
4.50	The measured output DC current of the proposed rectifiers	151
4.51	The measured output DC voltage of the proposed linearly polarized rectenna	152
4.52	The measured output DC voltage of the proposed circularly polarized rectenna	153
4.53	The measured output DC voltage of the proposed linearly polarized rectenna (integrated with single shunt and voltage doubler rectifier)	154
4.54	The measured output DC voltage of the proposed circularly polarized rectenna (integrated with single shunt and voltage doubler rectifier)	154
4.55	The measured output DC voltage of the proposed rectenna (patch array antenna with single shunt and voltage doubler rectifier)	155
5.1	Retrodirective array architecture	160
5.2	The proposed structure of the 2x2 retrodirective rectenna array for future study.	161

LIST OF ABBREVIATIONS

WPT	-	Wireless Power Transmission
MPT	-	Microwave Power Transmission
RF	-	Radio Frequency
DC	-	Direct Current
AC	-	Alternating Current
FET	-	Field Effect Transistor
TWT	-	Travelling Wave Tube
EMI	-	Electromagnetic Interference
RFID	-	Radio Frequency Identification
Hz	-	Hertz
GHz	-	Gigahertz
kW	-	Kilowatt
MW	52	Megawatt
dB	. tell	Decibel
PCB	2	Printed Circuit Board
TM 🔘	-	Transverse Magnetic
TE	-	Transverse Electric
СР	-	Circular Polarization
LP	-	Linear Polarization
RHCP	-	Right Hand Circular Polarization
LHCP	-	Left Hand Circular Polarization
PBG	-	Photonic Band Gap

DGS	-	Defected Ground Structure
CMRC	-	Compact Microstrip Resonant Cell
CPW	-	Coplanar Waveguide
SIR	-	Step Impedance Resonators
SPDT	-	Single Polar Double Throw
VSWR	-	Voltage Standing Wave Ratio
MPPT	-	Maximum Power Point Tracking
FCC	-	Federal Communications Commission

ederal Communications Com

LIST OF SYMBOLS

h	-	Height of the substrate
W	-	Width of the rectangular patch
L	-	Length of the rectangular patch
а	-	Radius of the circular patch
E _r	-	ε_{r} is dielectric constant
$\mathcal{E}_{e\!f\!f}$	-	Effective dielectric constant
L_{eff}	-	Effective length
λ	-	Wavelength
f	-	Frequency
f_r	-	Resonance frequency
L	-	Inductor
С	-	Capacitor
Y	- :54	Admittance
Ζ	. tell	Impedance
G	KHIS '	Conductance
V_D	© -	Voltage of the diode
V_p	-	Peak Voltage
V_{j}	-	Diode junction voltage
R_j	-	Diode junction resistance
C_j	-	Diode junction capacitance

Likutena Berpenindasan Harmonik Sendiri Untuk Penuaian Kuasa Tanpa Wayar

ABSTRAK

Pembangunan dan analisa beberapa reka bentuk sistem likutena berpenindasan harmoniksendiri untuk penuaian kuasa tanpa wayar dibentangkan. Tujuan likutena yang berpenindasan harmonik-sendiri adalah untuk mengelakkan penggunaan litar penapis harmonik didalam penapisan isyarat harmonik dan gangguan elektromagnet (EMI) dalam sistem likutena. Motivasi untuk kerja-kerja ini telah diilhamkan oleh keperluan rekaan terkini yang menuntut saiz yang padat, kos yang rendah, kecekapan sistem likutena yang tinggi dan juga yang sangat penting ialah struktur senibina yang mudah untuk mengurangkan ralat semasa proses fabrikasi. Sebagai tindak balas kepada tuntutan yang mencabar ini, empat reka bentuk antena tampal mikrostrip berpenindasan harmonik-sendiri telah disimulasikan, dibikinkan, diukur dan dianalisa. Dua binaan boleh dikelaskan dalam polarisasi linear manakala dua lagi binaan mempamerkan sifat-sifat polarisasi bulatan. Teknik untuk menindas harmonik-sendiri yang telah diperkenalkan adalah belahan, slot dan takuk di struktur antena tampal dan puntung terbuka di mikrostrip suapan. Selain itu, teknik pencacatan keatas struktur satah bumi diperkenalkan untuk mengurangkan saiz antena tampal. Teknik pengusikan telah diperkenalkan keatas bentuk asas segi empat tepat dan bulat antena tampal untuk menghasilkan gelombang berpolarisasi bulatan. Hasilnya, bentuk segi empat tepat menjadi bentuk yang segiempat yang hampir sama, manakala bentuk yang bulat menjadi bentuk elips. Disamping itu, satu antena bersifat dwi-polarisasi bulatan juga dicadangkan. Untuk mendapatkan voltan keluaran yang tinggi, antena tampal penindasan mikrostrip tatasusun yang berpenindasan harmonik-sendiri juga telah dibangunkan. Didalam pemprosesan penukaran isyarat gelombang radio kepada isyarat arus terus, beberapa reka bentuk litar penerus telah dicadangkan. Rangkaian padanan bagi litar penerus yang dicadangkan mampu untuk mempunyai padanan impedans yang baik untuk membenarkan kuasa yang maksima dipindahkan. Didalam kerja-kerja simulasi, aplikasi CST Microwave Simulator dan Advanced Design System (ADS) telah digunakan. Sebagai pengesahan keputusan teori dan simulasi, prototaip bagi semua reka bentuk telah dibikinkan dan diukur. Untuk perbandingan, prototaip antena tampal mikrostrip biasa berbentuk segiempat dan bulatan juga direka dan dibikinkan. Hasil daripada pengukuran prototaip menunjukkan keputusan yang cemerlang dan selaras dengan keputusan simulasi. Kehilangan pulangan bagi antena yang telah diukur menunjukkan ia hanya bergema pada frekuensi yang asas sahaja, manakala pada frekuensi harmonik, magnitud kehilangan pulangan telah ditindas dengan jayanya. Dalam ujikaji sistem penuaian kuasa tanpa wayar, didapati peningkatan yang ketara didalam kuasa keluaran berjaya dicapai berbanding dengan antena rujukan tanpa penindasan harmonik. Semua reka bentuk telah direalisasikan dengan menggunakan proses piawai PCB. Dengan itu, teknik fabrikasinya adalah sangat mudah dengan kos yang murah, oleh itu ia boleh dengan mudah besar-besaran.

Self-Harmonics Suppression Rectenna for Wireless Power Harvesting

ABSTRACT

The development and analysis of several designs of self-harmonic suppression rectenna for the wireless power harvesting system are presented. The purpose of self-harmonic suppression rectenna is to eliminate the using of a harmonic filter circuit in filtering the harmonic radiation and electromagnetic interference (EMI) in rectenna system. The motivation for this work has been inspired by the need for compact size, low cost, high efficient rectenna system and also very important is the design structure is simple in order to reduce the error during the fabrication process. In the response to these challenging demands, four designs of self-harmonic suppression microstrip patch antenna have been simulated, fabricated, measured and analysed. Two designs can be classified in linear polarization while the other two designs exhibit the circular polarization properties. The technique to suppress the harmonics which have been introduced are the slits, slot and notch at the patch structure and an open stub at the microstrip feeding line. Also, a defected ground structure technique is applied to reduce the size of the patch antenna. The perturbation technique has been introduced to the basic rectangular and circular shapes microstrip patch antenna to produce circular polarization property. As a result, the rectangular shape becomes a nearly-square shape, while the circular shape becomes an elliptical-shape. Subsequently, a dual polarization of circularly polarized property is also proposed. To obtain high output voltage, a self-harmonic suppression microstrip patch array antenna is developed. For conversion of RF-to-DC signal, a few designs of rectifier circuits are proposed. The proposed rectifier matching networks are capable to provide a good impedance matching with a wide range of incident power. All the simulation has been done by using CST Microwave Simulator and Advanced Design System (ADS). То validate the theory and simulation, the prototypes of all designs have been fabricated and measured. For the comparison, the prototype of the conventional linear polarization (LP) rectangular and circular microstrip patch antenna are also have been designed and fabricated. The measurements show an excellent result and is in line with the simulated result. The measured of the return loss of the antennas show it resonate at the fundamental frequency, while at the harmonic frequencies, the magnitude of the return loss were suppressed successfully. In the wireless power harvesting system experimental work, it is seen that a significant improvement of the output power is achieved compared to the reference antenna without harmonic suppression. All design has been realized by using a standard PCB process. Therefore, the fabrication technique is very simple with a very cheap cost, thus it can be conveniently mass-produced.

CHAPTER 1

INTRODUCTION

1.1 Overview

In the past few decades, many types of technology have been introduced, developed and implemented in an attempt to solve the crisis of the world's electricity sources due to the diminishing coal, oil and gas reserves. Nowadays, one of the main concerns of every scientist and researcher in introducing or developing any new technology is the impact that its implementation will have on the environment. This awareness stems from the effect of the carbon emissions, which can cause various problems to the environment and human life that result from the generation of electricity using existing technology, which mostly depends on fossil fuels as a burning source to drive the electrical generator.

Although nuclear energy can be categorized as a clean and efficient energy, a suitable and safe method of disposal of nuclear waste has not yet been discovered, and while the generation of hydroelectricity can be categorized as a renewable source, the construction of hydroelectric dams required a large area of land that would involve the destruction of the environment. Such issues have been given attention in every exploration of the development of new alternative sources of electric energy. As a result, a variety of technologies and methods to obtain new sources of electricity have been introduced and developed. One of the most promising technology that has introduced recently is the energy harvesting technology. Energy harvesting is the process of conversion of any energy to electrical energy, such as sound energy, vibration energy, solar energy, wind energy, ocean wave energy, thermal energy and