
DESIGN AN ISOLATED FORWARD CONVERTER

RD WONG CHIN HONG WONG CHIN HONG WONG CHIN HONG SCHOOL OF ELECTRICAL SYSTEM ENGINEERING UNIVERSITY MALAYSIA PERLIS 2011

DESIGN AN ISOLATED FORWARD CONVERTER

ACKNOWLEDGEMENT

First of all, I would like to thank UniMAP for providing me with the opportunity and support to precede with my final year project, including access to the FYP lab and Power Electronics Lab, fabrication of the PCB board and supply of components. I would like to thank my supervisor Professor R.T. Kennedy for providing guidelines, advice, suggestions and comments related to the project. Last, but not least, I would like to thank to my housemates for their support during the period of the final year project.

- pr or their support during or their support during or their support during

DECLARATION SHEET

I hereby declare that my Final Year Project Thesis is the result of my research work under supervision of Prof. R. T. Kennedy. All literature sources used for the writing of this thesis have been adequately referenced.

Name (in capitals) : WONG CHIN HONG Candidate number : 071071052 Supervisor : PROF, R. T. KENNEDY Title of thesis (in capitals) : DESIGN AN ISOLATED FORWARD CONVERTER

Candidate's signature:	Supervisor signature:
Date:	Date:

DESIGN A ISOLATED FORWARD CONVERTER

ABSTRACT

This final year project report provides information related to the design and fabrication of a single transistor Isolated Forward Converter. The report provides a step by step design procedure and the selection process for the major components required to develop a high efficiency DC-DC converter suitable for a wide range of applications. The report includes a PCB design, product sub-subassembly configurations, test procedures, troubleshooting and concludes with a recommendation for product enhancement.

MEREKA BENTUK PENUKAR HADAPAN TERPENCIL

ABSTRAK

Laporan projek tahun akhir memberikan maklumat yang berkaitan dengan reka 'Single Transistor Isolated bentuk fabrikasi Forward dan Converter'. Laporan ini memberikan langkah demi langkah prosedur reka bentuk komponen dan pemilihan proses utama yang diperlukan untuk menghasilkan kecekapan yang tinggi bagi penukar AT -AT yang sesuai untuk pelbagai aplikasi. Laporan ini merangkumi rekabentuk PCB, produk configurasi tatarajah sub-subassembly, prosedur ujian gan orthisitemispro dan diakhiri dengan cadangan untuk peningkatan produk.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGMENT	i
APP	ROVAL AND DECLARATION SHEET	ii
ABS	TRACT	iii
ABS	ГRАК	iv
ТАВ	LE OF CONTENTS	vii
LIST	T OF TABLES	viii
LIST	NOWLEDGMENT ROVAL AND DECLARATION SHEET TRACT TRAK LE OF CONTENTS C OF TABLES C OF FIGURES C OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURES	ix
LIST	COF SYMBOLS, ABBREVIATIONS AND NOMENCLATURES	xi
СНА	PTER 1: INTRODUCTION	
1.1	Project Rationale	1
1.2	Project Statement and Objectives	1
1.3	Project Scope	2
(
CHA	PTER 2: LITERATURE REVIEW	
2.1	Introduction to Isolated Forward Converter	3
2.2	Principle of Operation	4
2	.2.1 Interval-1 of Circuit Operation	4
2	.2.2 Interval-2 of Circuit Operation	5
2	.2.3 Interval-3 of Circuit Operation	6
2	.2.4 Demagnetising Winding	7
2	.2.5 Waveform of The Circuit	10

CHAPTER 3: PROJECT METHODOLOGY

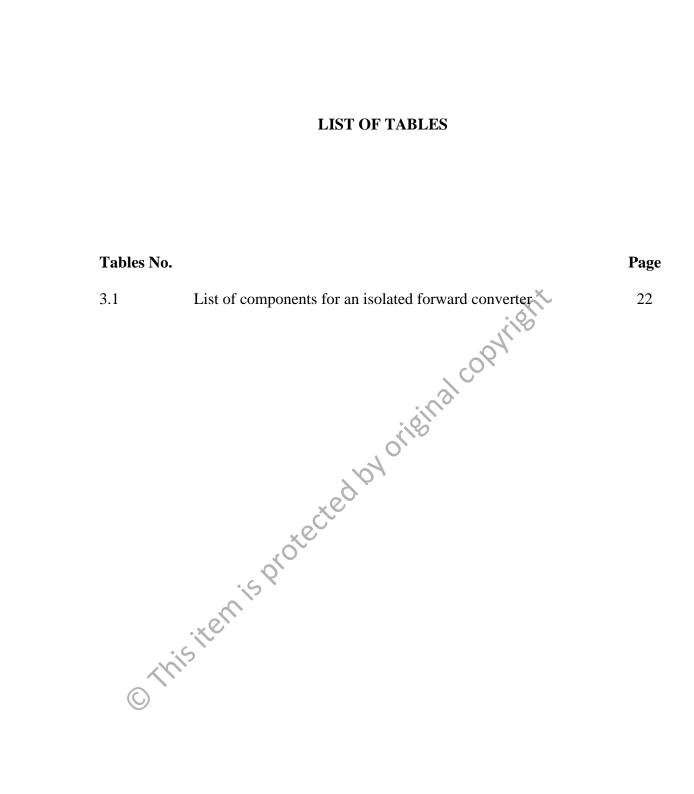
3.1	Literature Search and Review	13
3.2	Select and Design Circuit	13
	3.2.1 Designing of the Output Filter Section	15
	3.2.2 Design of the Primary Current Sensing Network	17
	3.2.3 Design of the Bootstrap Start Up Circuit	18
	3.2.4 Design of the Voltage Feedback and Compensation	19
	3.2.5 Design of auxiliary winding	20
	3.2.6 Design of AC to DC converter	21
3.3	3.2.6 Design of AC to DC converter Source Components PCB Design and Construct Circuit Hardware Test	22
3.4	PCB Design and Construct Circuit	24
3.5	Hardware Test	27
	, O'	

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Design Results	28
4.2	PCB results	32
4.3	Simulation Results	34
4.4	Hardware result	38
4.5	Result Analysis	39
	THIS	

CHAPTER 5: CONCLUSIONS

5.1	Summary	41
5.2	Future Recommendation	41
5.3	Commercialisation Potential	42


REFERENCES

43

APPENDICES

Appendix 1	44
Appendix 2	54
Appendix 3	62
Appendix 4	65

This terms protected by original cooprident

LIST OF FIGURES

Figures No.		Page
2.1	Basic topology of Isolated Forward Converter	3
2.2	Basic topology of Isolated Forward Converter The current path way of switch interval-1	4
2.3	The current path way of switch interval-2	5
2.4	The current path way of switch interval-3	6
2.5	Magnetising Current without Demagnetising Winding	7
2.6	Magnetising Current with Demagnetising Winding	7
2.7	The require duty ratio and $\frac{N_P}{N_R}$ turn ratio for demagnetising winding	8
2.8	The relation between V_{DSmax} , D_{swmax} and $\frac{N_P}{N_R}$ turn ratio	9
2.9	Current and voltage waveforms of isolation forward converter	10
2.10	Current and voltage waveforms of isolation forward converter	11
3.1	Flow Chart of Project Development	12
3.2	Complete circuit of Single Transistor Isolated Forward Converter	14
3.3	Transformer Turn Ratio and Connection	15
3.4	Schematic of the Two Stage Output Filter	15
3.5	Schematic of primary current sensing network	17
3.6	Schematic of Bootstrap Start Up Circuit	18
3.7	Schematic of Voltage Feedback and Compensation	19
3.8	Auxiliary Winding Circuit	20

3.9	Circuit Diagram of AC to DC Converter	21
3.10	Circuit Diagram Created Using OrCAD 9.1	24
3.11	Footprint for Transformer.	25
3.12	The Arrangement of Component and Track That Need To Be Converts to PCB	26
4.1	AC to DC converter	32
4.2	Start Up circuit	32
4.3	PWM controller circuit	33
4.4	Isolated transformer circuit	33
4.5	Start Up circuit PWM controller circuit Isolated transformer circuit Output circuit	34
4.6	Input voltage and gate signal against time	34
4.7	Voltage across primary winding, reset winding and secondary winding against time	35
4.8	V_{D1} , V_{D2} and V_{D3} against time	35
4.9	I_{DS} , V_{DS} V_{ind} against time	36
4.10	Graph output voltage against time	36
4.11	Gate signal against time	38
4.12 (n)	Output signal against time	39

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

	X
SMPS	Switched Mode Power Supply
PWM	Switched Mode Power Supply Pulse Width Modulation Metal-Oxide-Semiconductor Field-Effect Transistor
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
AC	Alternating Current
DC	Metal-Oxide-Semiconductor Field-Effect Transistor Alternating Current Direct Current Hertz Voltage
Hz	Hertz
V	Voltage
А	Ampere
D _{sw}	Duty Cycle
D1 this te	Diode 1
C O	Capacitor
L	Inductor
R	Resistor
Т	Time
Ν	Number of turn
f	Frequency
PCB	Printed Circuit Board