DEVELOPMENT AND ANALYSIS OF WEARABLE TEXTILE ANTENNA (WTA) DESIGN FOR ISM AND HIPERLAN APPLICATIONS

by

NURUL HUSNA BINTI MOHD RAIS
(0830810262)

A thesis submitted
In fulfillment of the requirements for the degree of
Master of Science (Communication Engineering)

School of Computer and Communication Engineering
UNIVERSITI MALAYSIA PERLIS

2012
ACKNOWLEDGEMENT

Alhamdulillah. Thanks to Allah SWT, the One who giving me the opportunity to complete my research project. I would like to express my gratitude to everyone, who helped until I successfully completed my research. My supervisor, Dr. Mohd Fareq bin Abd. Malek and my co-supervisor Mr. Soh Ping Jack gave excellent guidance throughout my research. Thank you for their full support and encouragement.

I would like to thank my parents; Mohd Rais bin Md Isa and Roohana binti Husaini and all my family for their understanding, patience, full support and constant encouragement along the duration I’m doing this project.

Deepest thanks and appreciation to all my colleagues, Saidatul Norlyana, Ezanuddin, Wee Fwen Hoon, Nikman and others for their cooperation, constructive suggestion and support. I really appreciate their helping hand to accelerate the progress of the project until it completed. Thanks to other Embedded Computing Cluster members, for their cooperation and contribution.

Last but not least I also would like to acknowledge Universiti Malaysia Perlis (UniMAP) Short Term Research Grant Scheme (Grant No: 9001-00141) and Ministry of Highest Education (MOHE) for the financial support.
DECLARATION OF THESIS

Author's full name : NURUL HUSNA BINTI MOHD RAIS

Date of birth : 17 MAY 1984

Title : DEVELOPMENT AND ANALYSIS OF WEARABLE TEXTILE ANTENNA (WTA) DESIGN FOR ISM AND HIPERLAN APPLICATIONS

Academic Session : 2009/2010

I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*

☐ OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of _____ years, if so requested above).

Certified by:

__ ___________________________
SIGNATURE SIGNATURE OF SUPERVISOR

___________________________ _______________________________
(NEW IC NO. / PASSPORT NO.) NAME OF SUPERVISOR

840517-08-5484 DR. MOHD FAREQ BIN ABD. MALEK

© This item is protected by original copyright
GRADUATE SCHOOL
UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from the Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and Universiti Malaysia Perlis, for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to:

Dean of Graduate School
Universiti Malaysia Perlis (UniMAP)
No, 112 & 114 (Tingkat Atas)
Taman Pertiwi Indah, Jalan Kangar – Alor Setar
TABLE OF CONTENTS

ACKNOWLEDGMENT ii
APPROVAL AND DECLARATION SHEET iii
PERMISSION TO USE iv
TABLE OF CONTENTS v-viii
LIST OF TABLES ix
LIST OF FIGURES x-xiii
LIST OF SYMBOLS xiv-xv
LIST OF ABBREVIATIONS xvi
ABSTRAK (BAHASA MELAYU) xvii
ABSTRACT (ENGLISH) xviii

CHAPTER 1 INTRODUCTION

1.1 Overview 1
1.2 Problem Statement 4
CHAPTER 2 LITERATURE REVIEW

1.3 Research Objective 5
1.4 Research Scope 6
1.5 Thesis Outline 6

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Types of Wearable Antenna 8
 2.2.1 Conventional Wearable Antenna 8
 2.2.2 Wearable Textile Antenna 8-11
2.3 Suspended Plate Antenna 12-16
2.4 Techniques to Enhance Impedance Bandwidth 17
 2.4.1 Slotted Patch: U-shaped slot and E-shaped slot 17-18
 2.4.2 Low permittivity and thick dielectric substrate 19
 2.4.3 Shorting post 20
2.3 Conductive Textile Material 20
2.4 Challenges in Wearable Antenna Deign 23
 2.4.1 Requirements for Wearable Antenna Design 23
 2.4.2 Analysis Required for Wearable Antennas 24
 2.4.2.1 Specific Absorption Rate (SAR) modeling 24-26
 2.4.2.2 Measurement with different bending portion 26-27
 2.4.2.3 On body measurements 27-28
2.5 Fundamental Antenna Parameters 29
 2.5.1 Reflection Coefficient, Return Loss and 29-31
 Voltage Standing Wave Ratio
 2.5.2 Bandwidth of an antenna 31-32
 2.5.3 Radiation Pattern 33
 2.5.4 Efficiency 34
 2.5.5 Directivity 35
 2.5.6 Gain 36
 2.5.7 Specific Absorption Rate (SAR) 37
CHAPTER 3 METHODOLOGY

3.1 Introduction 39
3.2 Development of Wearable Textile Antenna (WTA) 39
3.3 Design Procedure 45
 3.3.1 Textile Conductivity Calculation 45
 3.3.2 Antenna substrate 45-46
 3.3.3 Rectangular Microstrip Patch Design 46-48
 3.3.4 Slots and Slits 49-50
 3.3.5 Probe Feed Location 51-53
 3.3.6 Shorting Post 54
3.4 Fabrication Process 55
 3.4.1 Generating Layouts 55-56
 3.4.2 Antenna Dimensioning 57
 3.4.3 Probe Feed and Shorting Post Placement 58-59
3.5 Measurements 60
 3.5.1 Return Loss Measurement Setup 60-63
 3.5.2 Radiation Pattern Measurement Setup 64-66
3.6 Summary 66

CHAPTER 4 RESULT AND DISCUSSION

4.1 Introduction 67
4.2 Parametric Analysis of the WTA Design 68
 4.2.1 Probe Feed Location 68-69
 4.2.2 U-Slot Length 70-72
CHAPTER 5 SUMMARY AND FUTURE WORK

5.1 Summary 111
5.2 Future Work 113

REFERENCES 114-118

APPENDICES

Appendix A : Measurement Equipment 119-124
Appendix B : Data sheet Conductive Textile 125-127

Appendix C : Workflow Evaluating SAR Calculation 128-132

LIST OF PUBLICATIONS/EXHIBITIONS 133-136
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Parameters of Conductive Textile</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Material Specifications of Wearable Textile Antenna (WTA)</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Design Specifications of Wearable Textile Antenna (WTA)</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Calculated antenna parameters</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Calculations to determine antenna's feed point location at 2.45 GHz.</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>WTA's bandwidth with different U-slot lengths</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Bandwidths of WTA with and without shorting post.</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Material Properties of Conductive Textiles</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulated and measured bandwidth results of the WTA design on arm, chest and rear part.</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Bandwidth of simulated and measured S_{11} result for the WTA design with different bending radius for E-plane and H-plane direction.</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Simulated and measured Gain, Efficiency, Directivity, Radiation Efficiency and Total Efficiency of the Antenna</td>
<td>91</td>
</tr>
<tr>
<td>4.7</td>
<td>Simulated gain and efficiency of the antenna on different part of body.</td>
<td>102</td>
</tr>
<tr>
<td>4.8</td>
<td>Table 4.8: Dielectric constant (ε_r) and conductivity (σ) of human tissue at 2.45 GHz and 5.35 GHz.</td>
<td>107</td>
</tr>
<tr>
<td>4.9</td>
<td>SAR Result for Different Part of Body.</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Organisation of IEEE 802.15 Wireless PAN Group</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Construction of the PIFA</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Possible placement of the PIFA antenna</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>The geometry and dimensions of the flexible PIFA for Bluetooth</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Three bend of CPW fed flexible antenna with straight, spiral and curve shapes</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Geometry and dimension of HMMPA.</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Antenna with 50Ω lien feed fabricated on PCB</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>View of the dual band textile antenna and side view of the antenna</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Geometry of the rectangular ring textile antenna</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Geometry and dimensions of the dual band E-shaped textile antenna on felt fabric</td>
<td>16</td>
</tr>
<tr>
<td>2.10</td>
<td>Geometry of a suspended plate antenna.</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>Geometry of U-shaped slot antenna</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>The geometry of the U-shaped slot patch antenna</td>
<td>18</td>
</tr>
<tr>
<td>2.13</td>
<td>Geometry of E-shaped Patch</td>
<td>19</td>
</tr>
<tr>
<td>2.14</td>
<td>Structure of Shorted Microstrip Patch</td>
<td>20</td>
</tr>
<tr>
<td>2.15</td>
<td>Sample of Conductive Textile from left (a) Veilshield, b) Zelt, (c) Flectron, and (d) Shieldit Super.</td>
<td>22</td>
</tr>
<tr>
<td>2.16</td>
<td>Computed SAR distributions at 2.2 GHz</td>
<td>25</td>
</tr>
<tr>
<td>2.17</td>
<td>SAR distribution of the antenna located around limb of human</td>
<td>26</td>
</tr>
<tr>
<td>2.18</td>
<td>Measurement setup of the antenna</td>
<td>27</td>
</tr>
<tr>
<td>2.19</td>
<td>Fabricated textile patch antenna placed conformal on the (a) human chest and (b) arm for experimental analysis on the body effect on antenna performance</td>
<td>28</td>
</tr>
<tr>
<td>2.20</td>
<td>Measurement setup for on-body measurement</td>
<td>28</td>
</tr>
</tbody>
</table>
2.21 Illustration of reflection at discontinuity
2.22 Bandwidth determination
2.23 Radiation Pattern illustration of the directive antenna.
3.1 Basic configuration of suspended plate antenna (SPA).
3.2 Antenna dimensions with \(L_p = 60 \) mm, \(W_p = 45 \) mm, \(L_g = 100 \) mm and \(w_g = 80 \) mm.
3.3 Research methodology flow chart.
3.4 Rectangular suspended plate antenna.
3.5 Utilization of Slit\(_L\), Slit\(_W\) and U-slot on the radiating patch.
3.6 Antenna’s top view with probe feed location.
3.7 Side view of the antenna showing the position of the shorting post.
3.8 Exporting CST antenna layout as a Gerber file.
3.9 Antenna Layout (a) Layout in Gerb tool Software (b) Printed Antenna Layout
3.10 Fabrication of the antenna using hand cut.
3.11 Conductive epoxy.
3.12 Conductive thread.
3.13 Fabricated WTA prototype.
3.14 Measurement setup for return loss measurement.
3.15 Antenna mounted on (a) Chest (b) Arm and (c) Rear part of body.
3.16 HUGO Model
3.17 Antenna wrapped on the cylindrical polystyrene (a) E-plane bending direction (b) H-plane bending direction.
3.18 Layout for radiation pattern measurement setup.
3.19 View inside the OTA–300 anechoic chamber.
4.1 Position of the feed point on the rectangular patch.
4.2 Simulated \(S_{11} \) result with different feed point locations.
4.3 Position of the feed point from antenna edges.
4.4 Top view of the antenna showing the U-slot length.

4.5 Simulated S_{11} result with different U-slot lengths.

4.6 Top view of proposed antenna design.

4.7 Simulated S_{11} result with slits.

4.8 Simulated S_{11} result with and without shorting posts.

4.9 Simulated S_{11} result with different values of dielectric constant, ε_r.

4.10 Simulated S_{11} result with different substrate heights, $h = 3\text{mm}, 4\text{mm}, 5\text{mm}, \text{and} 6\text{mm}$.

4.11 Simulated S_{11} result with a variation of ground plane sizes.

4.12 Simulated S_{11} result using different types of conductive textiles.

4.13 Geometry of the square L-slot textile antenna.

4.14 Simulated S_{11} result of the WTA design and Square L-slot antenna.

4.15 Simulated and measured S_{11} result in free space.

4.16 Antenna location at different parts of the body (a) arm, (b) chest and (c) rear part of body.

4.17 (a) Simulated and (b) measured S_{11} result at different parts of the body.

4.18 Antennas bended around cylinders in (a) E-plane direction and (b) H-plane direction.

4.19 Simulated and measured S_{11} result for Different Bending Radii for E-plane direction.

4.20 Simulated and measured S_{11} result for different bending radius for H-plane direction.

4.21 Simulated 3D and 2D pattern at 2.45 GHz and 5.35 GHz.

4.22 Simulated 3D and 2D radiation pattern for (i) 2.45 GHz and (ii) 5.35 GHz of the antenna placed on body.

4.23 Simulated 3D and 2D radiation pattern for (i) 2.45 GHz and (ii) 5.35 GHz of the antenna placed on chest.

4.24 Simulated 3D and 2D radiation pattern for (i) 2.45 GHz and (ii) 5.35 GHz of the antenna placed on rear part of body.
4.25 Measured 3D radiation pattern for 2.45 GHz (a) Top view, (b) bottom view, (c) side view.

4.26 Measured 3D radiation pattern for 5.35 GHz (a) Top view, (b) bottom view, (c) side view.

4.27 Simulated surface current distribution for 2.45 GHz rectangular patch.

4.28 Simulated surface current distribution on the radiating patch for the WTA antenna at (a) 2.45 GHz and (b) 5.35 GHz.

4.29 Calculated SAR averaged over 10g of human tissue as observed on different part of human body (a) Arm, (b) Chest and (c) rear part of body.
LIST OF SYMBOLS

\(\varepsilon \)
Electric permittivity (farads/meter)

\(\mu_0 \)
Permeability of air

\(\eta_{total} \)
Total efficiency

\(\sigma \)
Electric conductivity (Siemens/meter)

\(\delta \)
Loss tangent of dielectric material

\(\varepsilon_r \)
Relative Permittivity

\(\varepsilon_{eff} \)
Effective Relative Permittivity

\(\lambda \)
wavelength

\(\rho \)
Density of body tissues \([\text{kg/m}^3]\)

\(\Gamma \)
Reflection coefficient

\(\text{BW} \)
Bandwidth

\(C \)
Maximum transmit data rate,

\(c \)
Velocity of light waves in free space

\(D \)
The electric flux density

\(D \)
Directivity

\(E \)
The electric field intensity

\(f \)
Frequency

\(f_U \)
Upper frequency

\(f_L \)
Lower frequency

\(f_C \)
Center frequency

\(G \)
Gain
\(G_t \) Antenna receiver gain
\(G_s \) Antenna transmitter gain
\(h \) The height of the radiating plate
\(H \) The magnetic field intensity,
\(J \) The electric current density
\(L \) The geometric shape of the radiating element (length)
\(L_p \) Patch length
\(L_{ge} \) Length of the ground plane
\(P_t \) Received power on antenna receiver
\(P_s \) Received power on antenna transmitter
\(P_{rad} \) Total radiated power
\(Rin \) The location and structure of the feeding stem
\(R_{radiated} \) Radiation resistance
\(R_L \) Loss resistance
\(U \) Radiation intensity
\(W \) The geometric shape of the radiating element (width)
\(W_p \) Width of the radiating patch
\(W_g \) Width of the ground plane
\(W_{stored} \) Stored Energy
\(Z_0 \) Characteristic impedance
\(Z_L \) Arbitrary load
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAN</td>
<td>Body Area Network</td>
</tr>
<tr>
<td>EBG</td>
<td>Electromagnetic band gap</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>HiperLAN</td>
<td>High Performance Radio Local Area network</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, Science, Medical</td>
</tr>
<tr>
<td>PAN</td>
<td>Personal Area Network</td>
</tr>
<tr>
<td>Q</td>
<td>Quality factor</td>
</tr>
<tr>
<td>SAR</td>
<td>Specific Absorption Rate</td>
</tr>
<tr>
<td>SPA</td>
<td>Suspended Plate Antenna</td>
</tr>
<tr>
<td>WBAN</td>
<td>Wireless Body Area Network</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless Personal Area Network</td>
</tr>
<tr>
<td>WTA</td>
<td>Wearable Textile Antenna</td>
</tr>
</tbody>
</table>
Pembangunan dan Analisis Reka bentuk “Wearable Textile Antenna (WTA)” untuk Aplikasi ISM dan HiperLAN

ABSTRAK

Development and Analysis of Wearable Textile Antenna (WTA) Design for ISM and HiperLAN Applications
ABSTRACT

In recent years, there has been growing interest in utilizing wearable textile antennas for Body Area Network (BAN) antenna applications. Availability of conductive textiles allowed manufacturing of light-weight and flexible wearable antennas made entirely out of textiles. The proposed antenna is designed and optimized for both ISM (Industrial, Science and Medical) and HiperLAN (High Performance Radio LAN) applications, where operating frequency ranges from 2400 to 2480 MHz and 5150 to 5750 MHz, respectively. Previously, conventional microstrip antenna designs fabricated using rigid printed circuit board (PCB) laminates are unable to conform to BAN's flexibility and deformity prerequisites. On the contrary, the proposed antenna in this investigation is fabricated using conductive textiles, which are built using a combination of conductive polymer/metal fibers and normal fibers. The development procedure of this Wearable Textile Antenna (WTA) starts with its specification definition, materials selection, simulation using CST Microwave Studio software and finally, design prototyping and measurements. Due to the manual fabrication procedure employed, the antenna designed is to be as simple as possible. The proposed basic rectangular radiator is then improved using slots and slits to enable dual-band resonance and broad bandwidths. Its main structural design concept is based on a suspended plate antenna - a 60 × 45 mm rectangular radiating element is suspended over a 80 × 60 mm ground plane using a 5 mm foam substrate. The antenna has undergone several investigations to ascertain its overall performance. Performance of the antenna investigated in free space, placements on different body locations and under different bending radii. S_{11}, gain and efficiency of the antenna in free space and in proximity of human body showed good agreements, indicating design robustness under various operating conditions.
CHAPTER 1

INTRODUCTION

1.1 Overview

In recent years, body centric wireless communication has experienced rapid growth, in line with the vision of wearable computing, which describes future electronic systems as an integral part of everyday clothing. Wearable computing can be seen as a part of the wireless body area network (WBAN). Body area network (BAN) is a natural progression from the personal area network (PAN) concept, consisting of a number of nodes and units. Each node is placed on, or in close proximity of the body for the purpose of inter- and intra-body information transmission and relay. These inter- and intra-body nodes can be classified as on-body, off-body and in-body communication (Hall, 2006). On-body communications describe the link between body mounted devices communicating wirelessly. Off-body communication define the radio link between body worn devices and base units or mobile devices located in the surrounding environment. In-body communication is concerned with relaying and exchanging information between wireless implants and on body nodes.

Body centric wireless networks operate in the unlicensed portions of the spectrum. Industrial, science and medical (ISM) band, ranging from 2.40 – 2.48 GHz is unlicensed
band under the WBAN and WPAN standards. Typically, a WPAN permits communication within a very short range (around 10 m) which could enable the application of wearable computing devices. Such technologies are Bluetooth, which used as the basis for a new standard, IEEE 802.15 and Ultra wideband (UWB). Figure 1.1 shows the organization of IEEE 802.15 Wireless PAN group (Alfvin, 2003).

Figure 1.1: Organization of IEEE 802.15 Wireless PAN Group.

Body centric wireless communication has been implemented for indoor wireless communication, which covers a wide variety of situation ranging from communication with
individuals walking in residential or schools and hospitals. Body centric wireless networks require body worn antenna or also called wearable antenna. The wearable antenna has to be immune to the presence of human body. This is due to the electromagnetic absorption in tissue, which could result in changes to the antenna's impedance bandwidth, gain and efficiency. In addition, the wearable antenna must have a safe specific absorption rate (SAR) level to avoid excessive electromagnetic radiation to the users. This can be achieved if the antenna has a good shielding mechanism. For users' comfort, the wearable antenna is desired to be light weight, flexible and able to conform to the curvature of human body. In order to fulfil these requirements, the proposed antenna is made purely from textile to guarantee flexibility and comfort.

The proposed design utilize conductive textiles, which are constructed by interpolating conductive metal/polymer threads with normal fabric threads or conductive threads. This results in an ordinary-feel textile/cloth. In the late 1980's conductive textiles were first used as electromagnetic shielding material (Joyner, 1989). Antenna developers have recently found out that conductive textiles are also suitable for antenna design, proving them comparable to conventional antennas designed using printed circuit board (PCB) materials.

While most of the reported wearable antenna has single band frequency for wireless communications around 2.45GHz (Salonen, 2001; Tronquo, 2006; Hertleer, 2007), few are able to operate for dual frequency bands, allowing simultaneous mobile network connections at both 2.45GHz and 5 GHz. The wearable antenna proposed in this research is
designed for 5.15 – 5.75 GHz HiperLAN and unlicensed 2.45 GHz ISM (Industrial, Science and Medical) band due to the significant interest in the use of Bluetooth/WLAN modules for body worn devices.

1.2 Problem Statement

Body worn antenna or wearable antenna is an antenna that can be worn or integrated into clothing. This requires its material to be flexible and light weight to guarantee user comfort, besides being able to conform to the curvature of human body (such as around the human arm). There exist limitations for antenna design manufactured from rigid printed circuit board (PCB) materials, such as conventional Rogers, Taconic and FR-4 board. These materials are non-flexible, making it unsuitable for body worn applications. Conductive textiles is seen as the most suitable to fit this purpose: it has good conductivity, enabling it to radiate electromagnetic waves, is light weight and flexible. There are several existing textile antenas that can operate in dual frequency. The proposed antenna capable for dual band frequency, therefore it can be used for two applications and reduce the numbers of required antennas to be used in a single device.
1.3 Research Objective

The objectives of this research are as follows:

i. To investigate suitability and reliability of conductive textiles for antenna design.

ii. To investigate the effects of slits and slots to realize the dual band ability of wearable textile antenna.

iii. To develop wearable textile antenna with safe specific absorption rate (SAR) value which is less than 2 W/kg.

iv. To develop antenna with wide bandwidth with simple design techniques.

v. To develop wearable textile antenna capable to operate for frequencies bands of 2.40–2.48 GHz and 5.15 – 5.75 GHz (ISM and HiperLAN) using a single structure.

1.4 Research Scope

The main scope of the research work presented in the thesis is to design and develop antennas using conductive textiles suitable for body area network. The main purpose is to achieve an efficient, light weight and low profile textile antenna capable of operating in frequencies bands of 2.40 – 2.48 GHz and 5.15 – 5.75 GHz for ISM and HiperLAN using a single structure. The development and analysis of the antennas are performed using CST Microwave Studio simulation software. Fundamental parameters of the antenna namely