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Further improvement in the variational many-body wave functions for light nuclei
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An improved variational ansatz is proposed and implemented for variational many-body wave functions for
light nuclei with nucleons interacting through Argonne (AVs) and Urbana IX (UIX) three-nucleon interactions.
The new ansatz is based upon variationally distinguishing between the various components of the two-body
Jastrow and operatorial correlations, which are operated upon by three-body and spin-orbit correlations. We
obtain noticeable improvement in the quality of the wave function and lowering of the energies compared to
earlier results. The new energies are —8.38(1), —28.07(1), and —29.90(1) MeV for 3H, *He, and Li, respectively.
Though, the present improved ansatz still fails to stabilize the °Li nucleus against a breakup into an o particle
and a deuteron by 390 KeV; nonetheless, it is an improvement over previous studies.
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I. INTRODUCTION

In an earlier publication, two of us (Q.N.U. and K.A.)
proposed and implemented a simple method for improving
the variational wave function of a many-body system [1]. In
particular, we applied the method to lighter nuclei *H, “*He, and
®Li. The method was based upon improving the radial shape
of the already-known correlations that were introduced over a
number of years, relying primarily upon intuition and physical
insight, and in part were guided by perturbation theory and
various features of the shell model [2]. It was demonstrated
that the relative error in the many-body wave function increases
at least in proportion to the number of pairs of particles.
Thus, as the number of particles in the system increases,
the errors also grow. Our improvement of the wave function
led to essentially exact solutions for nucleon interacting with
central interactions [3,4] for *H, “He, °Li, and °He. But with
nucleons interacting through realistic interactions, such as
Argonne AV g [5] two-body and Urbana UIX [6] three-body
interactions, which have complicated operatorial dependence,
the improved variational Monte Carlo (VMC) method gives
only approximate solution [1]. Though, the improvement was
significant, particularly for °Li [1], which was around 1.7 MeV
(5.6%) lower compared to earlier VMC result [2], but it failed
to provide a stable °Li against breakup into an o particle
and a deuteron by 430 KeV. Improvements in *H and “He
energies were 0.4% and 0.6%, respectively, though small
but statistically significant. But the energies of *H, *He, and
5Li were higher by 1.3%, 1.6%, and 4.7%, respectively, as
compared to the effectively exact Green’s Function Monte
Carlo (GFMC) [2] calculations. In constructing the variational
wave functions, we have used the known correlations and their
structures as proposed and developed earlier by Pandharipande
and collaborators [7-11], which we designate as PANDC
correlations.

In the present work, we continue to use PANDC correlations
but with a difference. We modify their structure somewhat. The
state-of-the-art variational wave function for s- and p-shell
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nuclei consists of two parts: (a) a Jastrow part operated upon by
a symmetrized sum of two-body operatorial correlations, and
(b) this outcome is then operated by a sum of unity, operatorial
three-body and spin-orbit two-body correlations. We now
propose the ansatz that the outcome from (a) is variationally
different for the three terms of (b); i.e., we have three variation-
ally distinct Jastrow and the symmetrized sum of the two-body
operatorial correlations each for unity, operatorial three-body
and spin-orbit two-body correlations. This, in essence, is the
main theme of this paper. This shall be elaborated in more
details in the next section. Implementation of this ansatz
then leads to a further lowering of energies of *H and *He
by 0.4% and 0.6%, respectively. The improved energies for
*H and *He become —8.38 and —28.07 MeV, respectively,
which are significantly lower than the older VMC energies
of —8.32 and —27.72 MeV [2]. But, the new, improved
energies are still significantly higher compared to GFMC
energies which are —8.46 and —28.34 MeV, respectively, for
*H and *He. This clearly indicates that we are still missing
some correlations in the present variational ansatz. With the
new ansatz, however, lowering in the ®Li energy is not much.
It goes down from —29.69 [1] to —29.90 MeV, a relatively
small decrease by 0.21 MeV. It still fails to stabilize °Li against
a breakup into an « particle and a deuteron by 390 KeV. We
do not resolve this problem here. We leave it for a future
study.

In Sec. II, we briefly describe the Hamiltonian, i.e., Argonne
AV g and Urbana UIX interactions. In Sec. III, the wave
function is described where we elaborate in details our present
ansatz. In Sec. IV, we describe the results and discuss them.
Section V is conclusions.

II. HAMILTONIAN

The Hamiltonian H consists of two- and three-nucleon
potentials:

h2 A A A
HZ—%EV?—F;UU-F[;I(UU]( (21)
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For v;;, we use the full Argonne AV g [5] two-body potential,
which is written as

18

2_ Vi (0.

p=1

v (r) = (2.2)

The operators O are given by

OF"™" =11.6;-6;,8;.L- 5, L% L*G; - 5). (L - §)’]
Q[L, 7 - 7)1, (2.3)
05=15—18 =[1,6:-6;,S;,1®T;; and (T, +7;), (24

with T;; = 37,7, — 7T ; as the isotensor operator. All other
symbols have their usual meanings. The first 14 operatorial
components [Eq. (2.3) of Eq. (2.2)] are charge independent and
are an updated version of Argonne AV 4 potential [12]. The
remaining four operators [Eq. (2.4)] consist of three charge-
dependent and one charge-asymmetric operator. In addition,
the potential consists of full electromagnetic interaction,
containing the Coulomb, Darwin-Foldy, vacuum polarization,
and magnetic moment terms with finite-size effects. The
parameters of the potential have been obtained by fitting to the
Nijmegen pp and np scattering data base [13,14], deuteron
binding energy, and low-energy nn scattering parameters. For
the three-nucleon potential, we use the Urbana IX model,
which consists of two terms:

Vijk = vi';,iw + vl-lj-k. (2.5)
The Fujita and Miyazawa term [15] is given by
,jk = Z(Azn T, T T X, X
cyc
+ CorlTi - Tju T - Tl Xij Xik))s (2.6)

where the symbols {} and [] stand for anticommutator and
commutator terms and the operator X;; stands for
Xij = T (rij)Sij + Yz (rij)0; - 0. 2.7

The v '« 1s aphenomenological spin-isospin-independent term:

v = U0 Y TRinT7(rjs).

cyc

(2.8)

For Urbana IX model, A, = —0.02930 MeV, Cy, = Az, /
4 MeV, and U, = 0.0048 MeV. The radial factors 75 (r) and
Y, (r), respectively, are associated with the tensor and Yukawa
parts of the one-pion-exchange potential with a cut-off:

T(r) = (1 + g 2 ) PR e,
(ur) wur
(2.9)
Vo) = ZPEHD 1 n—er?)], (2.10)
ur

with & = 0.7 fm~! and the cut-off parameter ¢ = 2.1 fm~?2
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III. WAVE FUNCTION

The state-of-the-art variational wave function for light
nuclei (s- and p-shell) are written in the form

Wy) = |:1 + Z (Uijx + UL + Z Ul-ﬁs:|

i<j<k i<j

x [S]_[<1+Uij)]|%>.

i<j

(3.1)

For details regarding the various symbols and components
in the wave function Eq. (3.1), the reader is referred to Sec. 111
of Ref. [1]. As briefly explained in the introduction, we now
write a more general ansatz:

|Wy) = |:Sl_[ —l—Ua i|‘\1-’3)+ Z (Uijk—l-Ulf,iW)

i<j i<j<k
<[sTT0 et |t
l<m
+) Uiﬁs[ [Ta+ug }M), (3.2)
i<j k<l

where, the superscripts a, b, and ¢ refer to variationally
different sets of the operatorial product of the Jastrow and
the symmetrized sum of products of the two-body operatorial
correlations U;;. The Jastrow wave function |W) for s-shell
nuclei has the form

|\I}Z = |: 1_[ ‘fljk(rlj’rjkvrk[)HfZ(rlJ)}|¢)A(JMTT3))

i<j<k <J

(3.3)

where z stands for a, b, or ¢ of Eq. (3.2). The central
correlations f° and f, are the central two- and three-body
correlations with no spin or isospin dependence and ®, is an
antisymmetrized spin-isospin state. For light p-shell nuclei,
the structure of |W,) is much more complicated:

= A{( 1_[ i;k 1_[ fszs(rij) l_[ fsp(rkl)>

i<j<k i<j<k k<4<I<A
LS[n
x ) (ﬂLS[n] [T 75" em
LS[n] 4<l<m<A

X |CDA(LS[n]JMTT3)1234:56~~A>) } (3.4)

The operator A operates upon the total wave function to
ensure antisymmetry. The two-body central correlation f;,
(between an s- and a p-shell nucleon) has the same behavior
as f5 (or fZ, between the two s-shell nucleons) at short
distances but goes to unity at large distances to allow for
cluster formation into an « and the rest of the nucleons. The
variational parameters B s, give weights to the various LS
components of the single-particle wave functions. The central
correlation f,-5"" between the two p-shell nucleons and f;,
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FIG. 1. Variational energies as a function of N, the number of configurations for the three nuclei. N has to be understood as N x 10°.

are assumed to have the forms

FE = £y + b1 —exp [~ (r /65"]), (3.5)
fo = L1~ expl—(/5:P1), (3.6)

(1 +exp(r —s1)]

where, blL_Sg"] and s;_3 are variational parameters. The single-
particle wave function for the p-shell nucleons for different
LS components is given by

|DA(LS[n]T MTT3)1234:56.-4)

= |®4(0000)) 1234 [] &5 (Ra)
4<I<A

X {[ l_[ Ylm,(Qal)] |: l_[ Xl
d<I<A LM;[n] L4<I<A

1
X |: 1—[ vy >:| y
4<I<A TT;

(3
where ®,(0000) stands for the antisymmetrized spin-isospin
function of the o particle. The ¢-5"/(R,;) are the single-
particle wave function of a p-shell nucleon, where R,; is
the relative distance of the nucleon from the center-of-mass
of the « particle. x and v are the spin and isospin functions,
respectively. The single-particle wave function ¢/ 5"I(R,) are
generated by assuming that the p-shell nucleon is moving in
an effective Woods-Saxon potential, where the parameters of
the potential have been treated as variational parameters [1,2].

The operators Ufj in Eq. (3.2) are sums of noncommuting
spin, isospin, and tensor operators:

Ui=2

p=2,6

1

—m,
2

)]}

3.7)

[H fifkwfkvfkf)}"iwwf;- G8
ki, j

The radial functions u?, are variationally different for z
equal to a, b, or c. The operators 05. are given by

-

p=2—6 > o -
Oij ='L',"TJ',O',"O']',

S,’j and Sij(?i . 'EJ)

(0i - 0)(T; - T)),
(3.9)

These are represented as t, o, o7, ¢, and tt, and the
corresponding u’s are abbreviated as u?, u%, uZ_,u?, and u?_,
respectively. Together with f7, they constitute a set of f¢
correlations.

The three-body correlations Ujj; in Eq. (3.2) are induced
by the two-nucleon interaction [11] and U/Y" are due to
three-nucleon interaction. Variationally, these and the spin-
orbit correlation U§S are treated here in exactly the same way

as in Ref. [1]. The spin-orbit correlation consists of two terms:

Uiﬁs = Z [1_[ Jci?k(?ij’?jk’Fki):| “P(riJ')OiIJ]"
p=17.8 Lki,j
o/ =L-§, L-5G 7). (3.10)

The u’s, corresponding to p = 7,8, are denoted as u;, and
up;, respectively. The f. and seven u’s (for p = 2-8) are
obtained by minimizing the two-body cluster energy with a
modified two-nucleon quenched potential [10]. Then f. and
five u’s (for p = 2-6) provide the initial variational wave
functions for Egs. (3.2) to (3.4) for z = a, b, or c. These are
variationally modified through the relations

K
= f.+ at“cos (nmr/rs%) for r <r$%,  (3.11a)
c n d d

n=0

fi=fe for r>=ry”, (3.11b)

TABLE I. Variational energies and rms radii of various nuclei with AV g + UIX potential. Results for ansatz Eq. (3.2) are for 1 million

configurations.
Nucleus Experiment GFMC VMC
Ansatz (3.1) Ref. [1] Ansatz (3.2), Present
E(MeV) (rf,)”2 E(MeV) (r;) 2. K EMeV) (rf,)'/2 K  EMeV) (r;)”2 K EMeV) (r;) 172
‘H —8.482 1.60 —8.46(1) 1.5900) O —8.32(1) 1.58(0) 7 —8.35(1) 1.58(0) 7 —8.38(0) 1.59(0)
“He —28.30  1.48(1) —28.344) 145(1) 0 —27.72(4) 14700 7 —27902) 1.440) 7 -—28.07(1) 1.44(0)
°Li —31.99 2434) -31.15(11) 257(1) 0 —27.99(4) 2.48(0) 11 —29.69(3) 2.58(0) 11 —29.90(1) 2.52(0)
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FIG. 2. (Color online) The f¢ (black, solid line), féb (blue, dashed line), and f¢ (dark red, dash-dot-dot line) correlations for 3H. For details

see text.

K
ul =u, + Zaf’z cos (nr [rl%) for r <ri®, (3.12a)
n=0

=u, for r=rl", (3.12b)

for p =2-6. Here, a’* and a;,* are variational parameters that
are distinct for different z (a,b, or c¢). Similarly, the healing
distances ;' and r}* are also variational parameters. At r =

rg”%, Egs. (3.11) and (3.12) imply that

K
ag" =Y (1) lag, (3.13)
n=1

The cosine functions in Egs. (3.11a) and (3.12a) also imply
that the first derivatives of £7 and u?, atr = rg'”"* are zero. In
all other correlations, modifications similar to Egs. (3.11) or
(3.12) have been employed without any z dependence [1].

IV. RESULTS AND DISCUSSION

The radial shape of the correlations Eqs. (3.11) and (3.12)
are highly flexible in nature. With correlations of these type,
a straightforward minimization of energy using a given but
finite random set of Monte Carlo configurations invariably
leads to very low values of the energy with large statistical
errors. But with a new random walk with the optimized
variational parameters the energy values become much higher.
Thus, this procedure actually raises the true expectation value
of the energy. We found it essential to minimize a suitable
combination of energy and variance, o, to find an upper bound
on the energy. The variance is defined as

4.1)

034323-4



FURTHER IMPROVEMENT IN THE VARIATIONAL MANY- ...

1.0 F :
[ fe with unity
— ——- f¢ with three-body

0.8 F
r fe with L.S

0.6 |
04 Ff

02 %

0.0:\\\\‘\\\\‘\\\\‘\\\\:

0.00 |
o -0.05 [
N L

-0.10 |/

S0.15 ¥

002 F /o

0.00 [/

<= -0.02

-0.04 |

-0.06 |

r (fm)

PHYSICAL REVIEW C 86, 034323 (2012)

0.15
0.10
0.05

<" 0.00

-0.05 :
-0.10 :

-0.15”.“"\“H\“H\H“:

7 (fm)

FIG. 3. (Color online) The f¢' (black, solid line), fé’ (blue, dashed line), and f¢ (dark red, dash-dot-dot line) correlations for “He. For

details see text.

where H is the Hamiltonian and N is the number of statistically
independent samples. We, thus, minimize the function:
X =I|E+C|+m,N—1"0. 4.2)
Here, E is the variational energy, obtained with the wave
function described in Sec. III, and C is a positive constant
much larger than |E|. The parameter m, decides the relative
importance of the energy and the variance in the minimization
procedure. Its value is chosen through trial and is different
for different systems. For SLi, because of the flexible nature
of the correlations, the minimization of x, [Eq. (4.2)], leads
to very large values of the rms radius of this nucleus, which
corresponds to its separation into an « and a deuteron cluster.
To remedy this shortcoming we modify x to

172
cal

(4.3)

xCLi) = |[E + C| +m,(N — D' 20 +n,|(r})I> — (r?)

exp

’

where (r2)ég and <r2>¥12 are, respectively, the experimental

and the calculated value of the rms radius of °Li, and, like m P>
the parameter 7, is a weight factor chosen by trial. Nonzero
values of n, are used at the initial stages of the minimization
procedure. After a reasonable minimum is reached, we put
n, = 0 and search the variational parameters again. This
procedure then gives a locally bound ®Li nucleus without an o
and a deuteron separable cluster.

In Table I, we present the results for *H, *He, and °Li. These
were obtained with AV g + UIX with full electromagnetic
interaction. For comparison purposes results with earlier VMC
[1] and GFMC [2] calculations are also given. The entries
for K = 0 correspond to VMC calculations with PNADC
correlations without any fine tuning, and for K = 7 for
*H and *He, and K = 11 for SLi with fine-tuning using
relations similar to Egs. (3.11)—(3.13) as described in Ref. [1].
All these entries correspond to calculations with the ansatz
Eq. (3.1). The last three columns give the results with the
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FIG. 4. (Color online) The f¢ (black, solid line), fé’ (blue, dashed line), and f¢ (dark red, dash-dot-dot line) correlations for °Li. For details

see text.

ansatz Eq. (3.2). The optimization of the energy was achieved
by minimizing x in the following manner. We begin with
the wave function obtained with ansatz Eq. (3.1) and plug

0.16
0.14 ¢
0.12
2 0.10
0.08
= 0.06
0.04
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0.00
0.0 0.5

1.0

1.5 2.0 25 3.0
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in this wave function into Eq. (3.2). We then vary the six
correlations f¢' using Eqs. (3.11)—(3.12) to minimize x using
Eq. (4.2) for °H and “He, and Eq. (4.3) for °Li. Next, f6” is

Y, T

1.4
1.2

1.0 -

0.8
0.6
0.4
0.2
0.0

. TAH0.7r)/10
/ \\

\
\

\
\

N

Y (0.7r) e

~

—

B S —r—

0

2

4 6 8
r (fm)

FIG. 5. (Left panel) The radial shapes of the spin-orbit correlations. (Right panel) The radial shapes of the functions appearing in the three

body correlations.
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FIG. 6. Local energies for *H as a function of R. Left panel is with ansatz Eq. (3.1) without fine-tuning. Middle panel is with ansatz

Eq. (3.1) with fine tuning. Right panel is with ansatz Eq. (3.2).

varied and then f¢. This process was iterated three times to
achieve the final convergence through an automated procedure.
The first iteration was carried out with 100 K predetermined
random configurations with the best wave function at each
stage of f¢, f6” , or f¢ variations for 3H and “He. For °Li,
10 K random configurations were used. In the next iteration,
200 K configurations for *H and “He were used; for °Li, 30 K
configurations were employed. In the final iteration, 200 K
configurations were increased to 300 K and 30 K to 50 K. For
Li, we performed one more iteration by putting n » =0
in Eq. (4.3) with the number of configurations 50 K. The
results presented in Table I with the ansatz Eq. (3.2) are for
1 million configurations. In Fig. 1, we plot the variations in
energy and variance for the three nuclei (left panel >H, middle
panel “He, and right panel °Li) as a function of the number
of configurations used starting from 100 K in steps of 100 K
ending at 1 million configurations. This figure demonstrates
that the variation of energy with respect to the number of
configurations employed is small and is a good reflection on the
quality of the wave function and the Monte Carlo evaluation.
We shall elaborate on this more in the next paragraph.

Next, the question arises as to how do the f correlations
differ from each other for z = a, b, or ¢, considering that this
ansatz has lowered the energy for all three nuclei. In Figs. 2—4
we plot the fZ(fZ, u?, ul, ul_, u?, and uf,) correlations for
7z = a, b, and ¢ for 3H, *He, and °Li, respectively. Each
figure pertains to one particular nucleus. The solid (black)
line stands for f¢ (with unity), the dashed (blue) line for f6”

(with three-body), and the dash-dot-dot (dark red) line for f{
(with spin-orbit) correlations. We observe from the figures
that all these correlations for z = a, b, and c are very different
from each other. In addition, there are pronounced wiggles
for r > 2 fm for z = b (three-body, dashed curve) and ¢
(spin-orbit, dash-dot-dot curve). For z = a (unity, solid curve),
all the correlations have more or less smooth behavior. In
this case, both the short and the long range behavior of the
correlations are important and contribute to energy. On the
other hand, the three-body and spin-orbit correlations which
operate upon fé’ and f;, respectively, are short-ranged. In
the left panel of Fig. 5, we plot u, and uj,, as a function
of r. It is seen that these correlations die out completely for
r < 2 fm. In the right panel, we have plotted 7,, (0.7r)/10
and Y, (0.7r) (the factor 0.7 being the variational scale
factor), the radial shapes which appear in the three-body
correlations [1]. They also become unimportant for r > 3
fm. Thus, to leading order of the cluster expansion of the wave
function the wiggles in fé’ and f¢ shall be unimportant due
to the short-ranged behavior of the three-body and spin-orbit
correlations. Hence, these wiggles seem to have no physical
origin or implications. They are probably a consequence
of over-parameterization. In case, these unphysical wiggles
were affecting the energy calculations, for example, through
the higher-order components of the cluster expansion of the
wave function, we would have probably felt their presence in
the calculations through glitches appearing in the energy or the
variance if the calculations were performed for a large number

-15
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FIG. 7. Local energies for “He as a function of R. Left panel is with ansatz Eq. (3.1) without fine-tuning. Middle panel is with ansatz
Eq. (3.1) with fine-tuning. Right panel is with ansatz Eq. (3.2).
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of configurations. We see no such glitches in Fig. 1 for all
the three nuclei. The energies are quite stable as a function
of the number of configurations N and the variance is strictly
proportional to N~!/2 as a function of N. This is the reason
that we carried out the calculations up to N = 1 million.
Another way of looking at the quality of the wave function
is through the local energies E(R) plotted as a function of
R, where R = Zi |r;| with r; being the distance of the ith
nucleon from the center of mass. These energies and the
corresponding variances are obtained by binning them around
R with an interval of 0.1 fm. For an exact wave function W,
E(R) will be independent of R. Thus, the variation of E(R) as
a function of R tells us about the quality of the wave function.
In Figs. 6-8, we plot E(R) as a function of R for *°H, “He, and
®Li, respectively. Left panels are the results of calculations
with ansatz Eq. (3.1) without any fine-tuning of the wave
function, middle panels are again with ansatz Eq. (3.1) but
the wave functions are fine-tuned [1], and right panels are
with ansatz Eq. (3.2). The lower dashed curves represent the
relative probability of R occurrences in arbitrary units for
100,000 configurations. The solid straight lines represent the
expectation values of the energies. We find that the variations
of E(R) from the solid line decreases steadily as we go from
left to right panels. This decrease is particularly evident for *He
(Fig. 7); for *H and °Li, the decrease is less pronounced (Figs. 6
and 8). It is fair to conclude that the ansatz Eq. (3.2) yields a
better quality wave function. However, we are still above the
GFMC values of energies by 0.08, 0.27, and 1.25 MeV for
3H, “He, and °Li, respectively. In particular, we have not been
able make °Li stable against a breakup into an a-particle and
a deuteron, only a marginal improvement has been obtained
with the ansatz Eq. (3.2) compared to the ansatz Eq. (3.1). We
have to wait till new insight into the structure of the variational

wave function is gained with complicated interactions such as
AVis.

V. CONCLUSIONS

In conclusion, we have made further progress with the vari-
ational wave functions of light nuclei. This became possible
by considering different sets of variational f{ correlations
when operated by three-body and spin-orbit correlations.
Implementation of this additional flexibility in the wave
function lead to a decrease in the energies of 3H, *He, and
Li by 0.03, 0.17, and 0.21 MeV, respectively, as compared to
the energies of Ref. [1]. Significant differences are found in the
f¢ correlations (z = a, b, or c) at short distances. It is argued
that differences in the long-range behavior for z = a, b, or ¢ are
of no consequence because of the short-ranged nature of the
three-body and spin-orbit correlations. We also demonstrated
that the improved ansatz leads to an enhancement in the quality
of the wave functions.

However, even with the improved ansatz, we do not find
®Li stable against the decay into an a-particle and a deuteron.
This stability is crucial, particularly if we want to extend the
variational calculations for hypernuclei [16] in the p-shell
region. We are continuing with our efforts in this direction.
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